
 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

169

Implementation of SRAM Based Error

Correction and Detection in Memory

System Using LFSR
 M Mounika

MTech Student, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India. Email:

mounika.murari@gmail.com

Dr. S. Kishore Reddy

Associate professor, HOD, Department Of ECE, VLSI System Design, Avanthi Institute of Engg.&Tech., India.

Email: kishorereddy416@gmail.com

V Nagaraju

Assistant professor, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: vasanthanagayadav@gmail.com

Abstract-Ternary Content Addressable

Memories, or TCAMs, are often used by network

devices in order to conduct packet categorization.

For example, they are used in the construction of

software-defined networks, the management of

security, and the transmission of packets (SDNs).

TCAMs are often used either as standalone

devices or as a component embedded into

networking application-specific integrated

circuits. TCAMs may also be used in either

capacity simultaneously. When working with

memory, one of the problems that might arise is

the possibility of soft errors destroying the bits

that have been saved. The memories might be

protected by using an error-correcting code or a

parity check to locate any errors; however, doing

so would require an increase in the number of

memory bits used each word. This approach

takes into consideration the need of maintaining

the integrity of the memory while simulating

TCAMs. This technique gives protection against

soft faults and the error correcting strategy that

provides rapid response time, inexpensive cost,

and excellent search performance in order to

deliver an error-free SRAM-Based TCAM

Design. In addition, this method offers protection

against hard faults.

Keywords- TCAMs, SRAM, Transmission,

Parity Check, Soft Faults.

Manuscript received Dec 10, 2022; Revised Dec 25, 2022;

Accepted Dec 31, 2022

1. INTRODUCTION

Very-large-scale integration (VLSI) integration

refers to the process of creating an integrated circuit

by placing a large number of semiconductors on a

single chip (IC). In the 1970s, as more complex

semiconductor and communication technologies

were being created, very large-scale integration

(VLSI) was first introduced. The chip in question is

a very large-scale integration device. Before the

development of VLSI technology, the bulk of ICs

were only capable of carrying out a limited number

of functions simultaneously. An electrical circuit

may include a central processing unit (CPU), ROM,

random access memory (RAM), and several other

components. VLSI makes it possible to put all of

them into a single chip.

The history of the transistor may be traced back to

the middle of the 1920s, when many inventors

attempted to change the current that was running

through solid-state diodes so that they would

become triodes. This was the first step in the

development of the transistor. Since the end of the

Second World War, the production of radar

detectors using silicon or germanium crystals has

significantly contributed to the advancement of both

practical and theoretical knowledge. Researchers

working in the field of radar have started producing

solid-state radar systems again. The era of vacuum

tubes gave way to that of solid-state devices when

the transistor was invented at Bell Labs in 1947. This

marked the beginning of the modern technological

era.

In the 1950s, mechanical engineers came to the

realization that the relatively simple transistor might

be employed in the construction of more complex

https://www.openaccess.nl/en/open-publications
mailto:mounika.murari@gmail.com
mailto:kishorereddy416@gmail.com
mailto:vasanthanagayadav@gmail.com

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

170

circuits. However, complications emerged as the

level of circuit intricacy grew. The magnitude of the

circuit was one of the issues. The dynamic circuit of

speed was similar to a machine. The length of the

wires that are connected to the modules will be

increased due to the fact that they are through.

Before the electronic impulses could be sent via the

device, the circuit had to first slow down the device.

When Jack Kilby and Robert Noyce built the

integrated circuit, they solved this issue by

combining all of the components of the

semiconductor material into a single block. This

allowed the integrated circuit to function (monolith).

This is necessary in order to complete the loops and

make the manufacturing process more efficient. This

gave birth to the concept of medium-scale

convergence in the beginning of the 1960s, which is

when all of the components are placed on a single

silicon wafer. (LSI) and VLSI, which incorporate

hundreds of millions (109) of transistors on a single

chip, were created by (MSI) in the late 1960s and

then again in the 1970s and 1980s. (MSI) was a

pioneer in the field of integrated circuitry.

Two transistors were included on the first

semiconductor devices. Eventually, additional

transistors were added, which resulted in the

progressive creation of a variety of different features

or devices. These developments occurred as a direct

result of the steady addition of more transistors.

Because the first integrated circuits only required a

small number of parts—perhaps 10 diodes,

transistors, resistors, and condensers—it was

possible to build one or more logic gates on a single

component. This was made possible by the fact that

integrated circuits only required a small number of

components. The advancement of technology has

led to the creation of systems that include hundreds

of logic gates. These systems are now referred to as

medium-scale integration (MSI), while they were

formerly known as small-scale integration (SSI).

More advancements were made possible as a result

of more sophisticated integration (LSI), which refers

to devices that have at least one thousand logic gates.

The fact that modern microprocessors have

hundreds of unique transistors and many millions of

gates is indicative of how far technology has

progressed since then.

A. Engineering for SSI

The first integrated circuits had a small number of

transistors. The term "small-scale integration" (SSI)

refers to the use of logic gates in binary circuits with

tens-numbering transistors; early linear integrated

circuits, such as the Plessey SL201 or Philips

TAA320, featured just two transistors. Rolf

Landauer, an IBM researcher, was the first to use the

terms SSI, MSI, VLSI, and ULSI when formulating

the scientific definition.

B. Engineering for MSI

The next phase in the process of building integrated

circuits was the invention of "small integration"

(MSI) modules in the late 1960s. These modules

each included several hundred transistors and were

the next step in the process of building integrated

circuits. The fact of the matter is that even if the cost

of production was comparable to SSI, it would still

be preferable to produce more complex devices with

smaller circuit boards, less labor-intensive assembly

(due to fewer individual components), and a number

of other advantages. This is because of the fact that

the reality of the situation is as follows.

C. LOW Scale Inclusion

In the middle of the 1970s, a phenomenon known as

"wider convergence," which consisted of tens of

thousands of transistors on a single chip, evolved as

a response to the same economic forces. In the early

1970s, the production of integrated circuits started in

small numbers. At that time, the first

microprocessors, computer chips, and 1K-bit RAMs

were among the integrated circuits that were created.

The first true 10,000-transistor LSI circuits for

device huge memory and second-generation

microprocessors were invented around 1974.

Using very large scale integration (VLSI), an effort

was originally made to calibrate and define various

degrees of specific integration. developed concepts

like as (ULSI). However, the many doors and

transistors that can be seen on modern technology

serve as a perfect representation of these wonderful

distinctions. Conditions that are more stringent than

the VLSI convergence requirements are utilized

much less often now. 2008 was the year when

billion-transistor processors were available on the

commercial market. The manufacture of

semiconductors progressed, and new 65 nm

technologies were discovered, which led to an

increase in its popularity. Recent designs make

advantage of robust and independent transistor logic

synthesis, which contributes to an increase in the

complexity of the logic implementation that is

produced. In addition, various hand-crafted high-

performance logic blocks, such as the static-random

access memory (SRAM) cell, have been designed in

order to get the greatest possible output.

2.FPGA-BASED TCAM IMPLEMENTATIONS

When working with FPGAs, the implementation of

TCAMs may primarily be done in one of two ways.

The first thing that has to be done is to build the

TCAM cells and match lines by making use of the

flip-flops and logic facilities provided by the FPGA.

The second option is to make advantage of the block

memory that is available on the FPGA.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

171

The bits of the rules are first held by flip-flops since

this is the most convenient option. As was

mentioned before, there are three distinct values that

may be assigned to each bit: 0, 1, and x. For instance,

a flip-flop can be used to store whether a bit is 0 or

1, and a second flip-flop, which functions as a mask

and is set when the bit is do not care, can be used to

record the result of the first flip-operation. flop's

Both flip-flops can be used together to record the

result of an operation. After then, programmable

circuitry may be used in order to carry out the

comparison with the key. Because of the significant

amount of resources that are needed for each rule,

this strategy cannot be utilized to construct

enormous TCAMs with tens of thousands of rules

that are longer than 100 bits and that function

quickly.

The second possibility involves making use of the

FPGA's built-in memories, which are known as

embedded memories. In order to do this, the key is

segmented into more manageable chunks of b bits.

After then, a rule might be reproduced by making

use of a 1-bit memory that has 2b places for each

block. When looking for a key, all of the memory is

accessible by utilizing the bits that correspond to the

key; a match is found if all of the locations read

contain a one. In most cases, k rules can be

implemented with the use of a memory that has k bi

t locations for each block. An illustration is the most

effective method for conveying this point. Consider

a key that is comprised of two blocks that are each

composed of three bits, bringing the total number of

bits to six. Then, a TCAM consisting of four rules

might be used, as seen in Figure 1. As can be seen,

each memory has a width of 4 bits and a total of 23

places, which equals 8 different storage spots. The

three bits at the very top of the key may be used to

access the memory that is placed the furthest to the

left, while the three bits at the very bottom of the key

can be used to access the other memory. When

reading data from memory, these bits are necessary

for determining the address of the memory location

being read from. Figure also demonstrates the rules

that are kept in each individual bit's storage space.

1. Let's have a look at the results of a key search for

the number 000011. We would go closer and closer

to the commencement of the story. The address on

the memory on the far left reads 1100, and the

address on the memory on the far right reads 011,

with the four position reading 1100. Following the

AND operation, the only rules that would be

satisfied are r1 and r2. When we examine the rules

in more detail, we see that the rules (r4) that are not

being utilized have zeros in every memory location

and location. This is visible when we examine the

rules more carefully. The number of ones that are

available in a specific memory for the remaining

rules is determined by the amount of x bits a rule has

on the address bits that are used as the memory's key

bits. A one is stored in the one position if there are

no x bits; whenever there are one or two x bits, the

two locations store a one; whenever there are three

or more x bits, the four places store a one; and so on.

There will typically be a total of 2n x ones on the

memory if there are n x bits that have the value x.

Fig.1 Parity protected TCAM with 6-bit keys

 and four rules emulated using two SRAMs.

Now take into consideration the expenses associated

with the implementation, keeping in mind that each

block must have b bits of SRAM memory and

includes b bits of a rule. Using this strategy will

result in a cost of 2b/b for each SRAM bit required

for the TCAM bit [13]. Therefore, it would seem that

lower values of b are more effective. However, this

is not quite accurate since the amount of mental

effort required to piece together the structure grows

in proportion to the number of bricks used. Be aware

that a significant amount of data stored in a physical

memory may be partitioned into a number of blocks,

each of which may execute via different components

of a rule. At that point, more memory accesses are

required to complete a search operation; however, it

is possible to prevent this by using multiport

memories or running the memory at a quicker speed

[16].

Memory resources for Xilinx FPGAs come in the

form of either lookup table random access memories

(LUTRAMs) or basic random access memories

(BRAMs). The early ones are typically compact

with 32 or 64 places and are constructed using the

same lookup tables (LUTs) that are used to

implement the logic. BRAMs, on the other hand, are

bigger and can store up to 36 k bits. They are capable

of being set up with a variety of word sizes, the

greatest of which is 72 bits, which is equivalent to

512 locations. As a direct consequence of this,

LUTRAMs have a cost per bit that is much lower

(25/5) than BRAMs do (29/9). On the other hand,

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

172

compared to LUTRAMs, BRAMs have access to a

greater number of total memory bits.

An essential finding for the safety of SRAM-based

TCAM implementations is that just a few

permutations of all of the potential values are

utilized, and the contents of the SRAMs are decided

by the rules that have been stated. This would seem

to imply that the contents of the SRAM had some

kind of built-in redundancy that may be used to

safeguard the memories. This concept will be further

explored in the next paragraphs of this short text.

An Energy-Efficient SRAM-Based TCAM on

FPGA: Ternary content-addressable memory

(TCAM) chooses a word from the ternary data it has

saved depending on the information contained inside

the word. Following completion of one cycle, the

address of the matched word is obtained by carrying

out a parallel comparison of the search key and each

of the TCAM words that have been stored. The

circuitry of a TCAM cell is responsible for storing,

as well as comparing, three different states. These

states are 0, 1, and the don't care state x. A priority

encoder and a collection of TCAM cells make up the

TCAM architecture (PE). Each TCAM cell has both

a comparison circuitry and two SRAM cells, each of

which may store a ternary bit. Both of these

components are responsible for storing the bit. In the

search technique, both search lines (also known as

SLs) and match lines are used (MLs).

The SLs give the TCAM words' matching cells with

search key bits in order to match them. The MLs are

used to illustrate the comparison findings for each

each TCAM word. If there is more than one TCAM

word that successfully matches the search key, the

PE will choose the address that has the greatest

priority among the matching addresses. Figure 1

may depict an example 4 3 TCAM design. Native

TCAM is a kind of TCAM that was built specifically

for an application as an integrated circuit system

(ASIC).

TCAM is used in a variety of different systems,

including look-up tables in networking routers [1,

2], translations-look-aside buffers (TLB) caches in

microprocessors [3, 4], database accelerators in big-

data analytics [4,5], filters for storing signature

patterns in the Internet of Things [6, 7], and local

binary patterns recognition systems in image

processing and DNA sequence matching [8, 9].

However, because of the specialized bit comparison

circuitry, the memory density of the native TCAM

cells is decreased. Additionally, because of the high

degree of parallelism in the system, native TCAM is

both costly and energy-intensive. In addition, the

native TCAMs that are built into ASICs have a

restricted number of configurations, which hampers

their capacity to adapt to evolving market demands

and prospective TCAM application trends that may

emerge in the future.

Figure 2 A 4 _ 3 TCAM: (MLSAs: Match

line sense amplifiers)

The ability of modern field-programmable gate

arrays, often known as FPGAs, to enable massive

parallelism in addition to flexibility via on-the-fly

reconfiguration makes them an appealing choice for

the development of new systems. This is because

tremendous progress has been made in CMOS

technology, which has led to this outcome. Block

RAMs, often known as BRAMs, are a prevalent kind

of embedded memory that is used in contemporary

SRAM-based FPGA devices such as the 16-nm

Xilinx Virtex Ultra SCALE FPGA. These BRAMs

can store large amounts of data. BRAMs are built

utilizing silicon substrates, and they are capable of

high speeds while using just a little amount of

power.

Integrated memory BRAMs on current SRAM-

based FPGAs are preferred due to the need for rapid,

adaptable (reconfigurable), and adaptive (easy for

integration) TCAM design. This is because

integrated memory BRAMs are easier to integrate.

SRAM is used to implement TCAM in FPGAs. This

is done by addressing SRAM with the contents of

TCAM and storing data for the whole of the TCAM

table in SRAM. The existence as well as the address

of a single TCAM pattern is stored in each word of

SRAM. currently available SRAM-based

TCAMs on FPGAs have a greater energy use than

other types of memories because it takes an

excessive amount of power to activate all of the

SRAM memory that is required for a lookup. For

example, the BRAMs on the FPGA were utilized to

construct 89 kb and 150 kb TCAM tables via the

SRAM-based TCAM design approaches, which

required a total of 2.5 Wand and 3.2 Wand,

respectively. These table sizes were accomplished

by employing the SRAMs. When capacity rises, the

already high power consumption of SRAM-based

TCAM devices becomes even more problematic.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

173

3. SOFT ERRORS IN SRAM

The sensitivity of semiconductor devices to

radiation has significantly grown as a result of the

evolution of technology. SRAM arrays are often the

most densely packed circuitry on a chip because they

make full use of very small cells. Due to the high bit

count, there is a greater chance that an ionizing

particle would collide with a sensitive node in the

array, therefore erasing the data that was previously

stored. The lowest layout dimensions reduce the

capacitance of the storage nodes and, as a result, the

critical charge Qcrit that might be introduced by

radiation and cause a disturbance in the SRAM cell.

The Qcrit is reduced even more as a result of the

falling supply voltages. Radiation may cause data

mistakes, which makes it difficult to construct

dependable SRAM arrays using nano scaled

technologies. These variables contribute to

radiation-induced data errors. Radiation may be the

major cause of localized ionization events in

semiconductor devices or it may be the outcome of

a secondary process. A small number of these

radiation-induced events create a enough number of

electron-hole pairs to cause damage to the storage

nodes of SRAM cells. A "soft" mistake is what we

mean when we say anything like this while we're

angry. A disturbance of this magnitude might cause

a data mistake, although the device structures

themselves are not irreparably harmed. Though the

voltage disturbance on one of an SRAM cell's

storage nodes is lower than the node's noise margin,

the SRAM cell will continue to function correctly

and will maintain the integrity of the data it stores

even if the disturbance occurred.

A "soft" mistake will occur, however, if the noise

buffer of a cell is insufficient to survive the

disruption induced by ionizing radiation. This might

lead to a cell malfunctioning. In the late 1970s, soft

errors were identified as a potential issue for

dynamic random-access memories (DRAMs) that

used planar storage capacitors. The charge that was

stored in these capacitors was kept in two-

dimensional p-n junctions that covered a huge

region. Early DRAM cells were very prone to soft

mistakes because of the high radiation-induced

charge collection efficiency of the large planar

reverse-biased connections. Technology advances

and attempts to lower the high soft error rates and

poor pause/refresh time ratios of DRAMs (SER)

(SER)

As a result, there was an increased need for portable

three-dimensional storage capacitors. Because of the

decreased volume of the p/n junction, the newly

developed 3D capacitors demonstrated a junction

collection efficiency that was much lower than that

of the older 2D planar capacitors. Despite the fact

that a DRAM cell's Qcrit will decrease as a result of

VDD scaling, the storage capacitor's aggressive

junction volume growth will more than compensate

for this loss. Because of this, the SER of a DRAM

bit cell drops by about 4 times with each new

generation of technical advancement.

This decrease in DRAM SER, however, is being

countered by the rapidity with which the system-

level DRAM bit count is growing. Because bigger

DRAM arrays are statistically more prone to

generate soft mistakes, the resultant DRAM SER at

the system level has remained impressively

consistent over numerous recent technological

generations. This is despite the fact that larger

DRAM arrays are statistically more likely to create

soft errors. The feedback mechanism that safeguards

the state of an SRAM cell allowed early SRAMs to

be more resistant to the effects of soft faults than

their DRAM counterparts. The critical charge of an

SRAM cell is impacted in two different ways: first,

by the restoring current of the pull-up or driver

transistors, and second, by the capacitance of the

storage node.

As a result of scaling in technology, the size of the

SRAM cell and, therefore, the junction area of the

storage nodes are both decreasing (Fig S1).

Additionally, the capacitance of the storage node

was decreased, and there is a possibility that the

leakage at the cell junction was lowered. A more

aggressive scaling of the VDD was the outcome of

switching from constant voltage scaling to constant

electric field scaling. The combined effect of these

two elements is to lower the Qcrit, which in turn

leads to an increase in the likelihood of soft

mistakes, which in turn leads to a rise in SER levels.

With each new generation of technology, decreases

in cell collecting efficiency brought on by decreases

in cell depletion volume were compensated for by

improvements in storage node and VDD

capacitance. These changes occurred with each new

generation of technology.

4. ERROR DETECTION AND CORRECTION

IN SRAM – BASED TCAMS

The emulated TCAM memory is equipped with a

protection system that employs a per-word parity bit

in order to identify instances of single-bit mistakes.

When an error is found, an attempt is made to fix it

by using the built-in redundancy of the memory

contents. This is done in the event that the fault

cannot be corrected. Figure 2 depicts the

implementation of the parity protection, where the

letter p stands for the parity bit. It is abundantly clear

that in addition to the match signal, an error signal is

also produced if there is a discrepancy between the

parity that has been saved and the one that has been

recomputed. This parity check is the industry

standard, and it can detect any and all single-bit

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

174

defects [5]. Error detection on each and every access

is very necessary in order to avoid producing

inaccurate search results.

Let's suppose for the time being that a specific word

had a single-bit mistake and that the parity check

was able to find it. In the event that a mistake is

discovered, we can investigate the matter by looking

at the information stored in the memory. A good

place to start would be to read every word in the

memory and make a note of the number of times

each rule occurs in a single area. This would be a

nice place to begin. Make use of that number to

indicate the significance of the rule associated with

that memory. Taking Fig. 2's leftmost memory as an

example, r1 would have a weight of 1, r2 would have

a weight of 2, and r3 would have a weight of 4. It's

possible that this will assist us in locating the

incorrect bit, given that the weight of an error-free

rule for an 8-position memory can only be 0, 1, 2, 4,

or 8. Let's concentrate on the cases of single-bit

mistake shown in Fig. 3 so that we can have a more

in-depth conversation about the process of error

repair. For example, e3 reduces the weight of r3 in

the leftmost memory from 4 to 3, making no other

modifications. After finding the parity mistake, we

would determine that the bit in register 3 (r3) is the

one that is incorrect, and then we would correct it

since 3 is not a legal value. It is possible that using

this method will be beneficial for rules which either

have weights greater than two or have two or more

"x" bits on the key bits relating to the memory in

question. On the other hand, when it comes to

regulations that have a smaller weight, it's possible

that examining the weight alone won't be sufficient.

Now, let's think about a rule that has a weight of two.

After then, there will be a blunder that causes a 0 to

be changed into a 1.

In order to rectify the situation, the value of the

weight is going to be raised to three. It is impossible

to repair the mistake when a one is converted to a

zero (as in e2) since the new weight would then be a

legal integer. This occurs when the error occurs in

the calculation for e2. However, the fact that there

are only two spots with a one makes the occurrence

of this event less probable. If we are going to take

the guideline for weight one as our standard, then an

error that changes another bit to one will result in a

weight of two, which is likewise acceptable.

However, not every possible combination of weights

two can be implemented. When looking at e4, this is

really obvious to see. In this scenario, the key values

000 and 011 would be similar to r2 values of one,

which are not equivalent to a legitimate rule. r2

values of one are not equivalent to a valid rule. Most

of the time, the search will not be successful until the

place in question matches a key value that is one step

removed from the initial value. On the other hand, a

mistake that resets a weight one rule's position from

one to zero may be remedied by confirming that the

rule has zero weight on the other memory. This

corrects the error that caused the position to be reset.

In this scenario, the rule would be deactivated, and

there would be no indication that the bit was

incorrect. If this was not the case, the mistake was

fixed, and the weight of the rule was increased to 1.

Last but not least, an inaccuracy in a rule with a

weight of 0 may also be rectified by evaluating the

impact of the rule on the other memories in order to

determine its relative importance.

Fig.3. Examples of single-bit errors on a parity

protected TCAM with 6-bit keys and four rules

emulated using two SRAMs.

The section that came before it demonstrated how

several single-bit error patterns may be resolved by

making advantage of the redundancy that was

already built into the memory contents. Now that we

have it figured out, let's calculate out how many

single-bit error patterns there are in a memory that

has 2b places that can be repaired for each weight.

1. There is no weight; errors in patterns may be

corrected.

2. Weight one: Everyone, with the exception of

those who set a bit to one for a place that has an

address at a distance of one; the sum of these two

values is equal to 1 b/2b.

3. The second weight entails that all patterns, with

the exception of the two that set a position with a one

to a zero, are able to have their values altered. This

is the same as 12 divided by 2b.

All patterns may be corrected up to and including

level four when using weights four and above.

The vast majority of the erroneous patterns have

been, without a doubt, fixed. This idea is made more

understandable by referring to Table I, which

provides an overview of the proportion of designs

that may be modified to accommodate columns with

varying weights. The only circumstances in which

all mistakes cannot be rectified are those involving

weights one and two; in such circumstances, the

percentage will be extremely close to 100% when b

is big. The only other circumstance is when all faults

occur in weights three and four. Table II presents,

for each of many possible values of b, the proportion

of mistakes that are amenable to correction. Even

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

175

with a relatively little amount of memory (b = 5,

which equates to 32 locations), the error coverage is

rather near to 90%, even in the worst case scenario,

as can be shown. The coverage for bigger memories

is more than 95% and comes very close to reaching

100%. As an example, the coverage for b = 9 is more

than 98% even in the most dire of circumstances.

This demonstrates how successful the suggested

method is at repairing single-bit mistakes in

situations where the parity bit is used to ensure

security for the memory.

5. SYNTHESIS AND IMPLEMENTATION OF

THE DESIGN

Before the design can be implemented on the

prototype board or checked for accuracy using

functional simulation, it must first be synthesized

and implemented. This may be done at any time

throughout the design process. While the top-level

VHDL file is accessed (by double-clicking that file

in the HDL editor window on the right section of the

Project Navigator), the implement design option

may become accessible in the process view of the

project. This occurs when the project view is in the

Module view. In addition, the process view displays

the available choices for the Generate Programming

File and Design Entry utilities. In the event that there

are any user limitations, they might be dealt under

the former, while the latter will be considered in a

later section.

Double-clicking the option in the Processes box that

is titled "Synthesize Design" will cause you to

synthesize the design. To get started, double-click

the "Implement design" option that is located in the

Processes box. There are several steps involved,

including Translate, Map, Place & Route, and

others. Any of these stages that were either

impossible to finish or were done in an unacceptable

manner will have a cross superimposed over them.

In such case, a check mark will be added after each

activity to show that it was completed without any

problems. If everything goes according to plan, there

will be a check mark shown next to the choice to

Implement Design. In the event that there are any

cautions, a checkmark will appear in front of the

option to indicate whether or not there are any

warnings. The Console window, which may be seen

at the bottom of the Navigator window, displays any

warnings or problems that may have occurred.

Because each of these markers is deleted every time

the design file is saved, you will need to start the

compilation process from scratch.

FIG.4 Implementing the Design (snapshot from

Xilinx ISE software)

The schematic representation of the synthesized

VHDL code may be examined in the Process

Window by selecting Synthesize-XST from the

menu and then selecting View RTL Schematic by

clicking it twice. This is a useful way for

troubleshooting the code and would be beneficial in

the event that the output on the prototype board did

not meet our needs.

When you double click, the top-level module will

open, and all it will show you are the module's inputs

and outputs, as seen below.

Fig 5 Top Level Hierarchy of the design

When you double click on the rectangle, the

underlying logic that has been established is

revealed, as demonstrated in the following example.

XilinxISE's implementation of the logic included in

the VHDL code The ETI simulation has been

finished successfully with the help of the model

Xilinx simulator.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

176

A. Simulation and synthesis has been carried

out with XILINX ISE:

Before the design can be implemented on the

prototype board or checked for accuracy using

functional simulation, it must first be synthesized

and implemented. This may be done at any time

throughout the design process. The implement

design option becomes accessible in the process

view when the top-level VHDL file is opened (by

double-clicking that file in the HDLeditor window

located on the right side of the Project Navigator)

and the project is shown in the Module view.

In addition, the process view displays the available

choices for the Generate Programming File and

Design Entry utilities. In the event that there are any

user limitations, they might be dealt under the

former, while the latter will be considered in a later

section. Double-clicking the option in the Processes

box that is titled "Synthesize Design" will cause you

to synthesize the design. In order to put the plan into

action,

To implement the design, double-click the

corresponding option in the Processes pane. There

are several steps involved, including Translate, Map,

Place & Route, and others. Any of these stages that

were either impossible to finish or were done in an

unacceptable manner will have a cross

superimposed over them. In such case, a check mark

will be added after each activity to show that it was

completed without any problems. If everything goes

according to plan, there will be a check mark shown

next to the choice to Implement Design.

One may be able to see the warnings, if there are

any! Put a checkmark in front of the choice to let

consumers know that there are certain precautions

they should take. The Console window, which may

be seen at the bottom of the Navigator window,

displays any warnings or problems that may have

occurred. When the file containing the design is

saved, each of these markers is removed, which

means that a new compilation will need to be done.

If you double click the View RTL Schematic option

in the Synthesize-XST menu in the Process

Window, you will be able to view the schematic

diagram that corresponds to the VHDL code that

was synthesized. If the output on the prototype board

did not match our standards, then this would be a

helpful approach for debugging the code.

Simply clicking the plus symbol that is located next

to the Modelsim simulator Tab in the Processes

window will allow you to make it larger (while

making sure the test bench file in the Sources

window is chosen). You need to click the Simulate

Behavioral Model button a total of two times. There

is a good chance that you may run across a compiler

error. When asked whether you want to quit the

simulation, choose "NO" from the drop-down menu.

There is nothing to be afraid of in this situation. As

a direct result of this, ModelSim ought to begin

running. Continue to watch it until it stops moving.

B. Technology schematic of crc Block replaced by

XOR gate in ETI architecture

6. EXPERIMENTAL RESULTS

RTL

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology

 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

177

CONCLUSION

In this paper, a method is proposed for securing the

SRAMs that are present on FPGAs and serve the

purpose of simulating TCAMs. The technique is

founded on the discovery that while not all values

may be obtained in those SRAMs, there are certain

degrees of duplication in the memory contents. This

observation is the foundation for the method. When

the memory is secured with a parity bit to detect

faults, this redundancy is employed to rectify the

majority of single-bit error patterns so that the

memory can function properly. Because the

suggested method reduces the amount of resources

required to safeguard memory by a large margin, it

is an attractive choice for implementation in systems

in which dependability is essential but resources are

in short supply.

This condensed description of the underlying idea

may be used for a variety of memory architectures.

For example, by routinely evaluating the accuracy of

an unprotected memory, it might be used to locate

problems in the memory and determine how to fix

them. It is possible to utilize it to rectify numerous

bit mistakes in the memory when it is protected by a

more robust code that is able to notice a string of

faults in succession. For instance, double-bit error

patterns for a memory that is guarded by an SEC

code may be identified and corrected by the use of

the built-in redundancy of the memory's contents.

REFERENCES

1. N. Kanekawa, E. H. Ibe, T. Suga, and Y. Uematsu,

Dependability in Electronic Systems: Mitigation of

Hardware Failures, Soft Errors, and Electro-

Magnetic Disturbances. New York, NY, USA:

Springer-Verlag, 2010.

2. J. L. Autran et al., “Soft-errors induced by

terrestrial neutrons and natural alpha-particle

emitters in advanced memory circuits at ground

level,” Microelectron. Rel., vol. 50, no. 9, pp. 1822–

1831, Sep. 2010.

3. L. Silburt, A. Evans, I. Perryman, S. J. Wen, and

D. Alexandrescu, “Design for soft error resiliency in

Internet core routers,” IEEE Trans. Nucl. Sci., vol.

56, no. 6, pp. 3551–3555, Dec. 2009.

4. Evans, S.-J. Wen, and M. Nicolaidis, “Case study

of SEU effects in a network processor,” in Proc.

IEEE Workshop Silicon Errors Logic-Syst. Effects

(SELSE), Mar. 2012, pp. 1–7.

5. L. Chen and M. Y. Hsiao, “Error-correcting codes

for semiconductor memory applications: A state- of-

the-art review,” IBM J. Res. Develop., vol. 28, no. 2,

pp. 124–134, Mar. 1984.

6. K. Pagiamtzis and A. Sheikholeslami, “Content-

addressable memory (CAM) circuits and

architectures: A tutorial and survey,” IEEE J. Solid-

State Circuits, vol. 41, no. 3, pp. 712–727, Mar.

2006.

7. F. Yu, R. H. Katz, and T. V. Lakshman,

“Efficient multimatch packet classification and

lookup with TCAM,” IEEE Micro, vol. 25, no. 1, pp.

50–59, Jan./Feb. 2005.

8. P. Bosshart et al., “Forwarding metamorphosis:

Fast programmable match-action processing in

hardware for SDN,” in Proc. ACM SIGCOMM,

2013, pp. 99–110.

9. Syafalni, T. Sasao, and X. Wen, “A method to

detect bit flips in a soft-error resilient TCAM,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 37, no. 6, pp. 1185–1196, Jun. 2018.

10. S. Pontarelli, M. Ottavi, A. Evans, and S. Wen,

“Error detection in ternary CAMs using Bloom

filters,” in Proc. Design, Automat. Test Eur. Conf.

Exhib. (DATE), Mar. 2013, pp. 1474–1479.

https://www.openaccess.nl/en/open-publications

