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Abstract-Ternary Content Addressable 

Memories, or TCAMs, are often used by network 

devices in order to conduct packet categorization. 

For example, they are used in the construction of 

software-defined networks, the management of 

security, and the transmission of packets (SDNs). 

TCAMs are often used either as standalone 

devices or as a component embedded into 

networking application-specific integrated 

circuits. TCAMs may also be used in either 

capacity simultaneously. When working with 

memory, one of the problems that might arise is 

the possibility of soft errors destroying the bits 

that have been saved. The memories might be 

protected by using an error-correcting code or a 

parity check to locate any errors; however, doing 

so would require an increase in the number of 

memory bits used each word. This approach 

takes into consideration the need of maintaining 

the integrity of the memory while simulating 

TCAMs. This technique gives protection against 

soft faults and the error correcting strategy that 

provides rapid response time, inexpensive cost, 

and excellent search performance in order to 

deliver an error-free SRAM-Based TCAM 

Design. In addition, this method offers protection 

against hard faults. 
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1. INTRODUCTION 

Very-large-scale integration (VLSI) integration 

refers to the process of creating an integrated circuit 

by placing a large number of semiconductors on a 

single chip (IC). In the 1970s, as more complex 

semiconductor and communication technologies 

were being created, very large-scale integration 

(VLSI) was first introduced. The chip in question is 

a very large-scale integration device. Before the 

development of VLSI technology, the bulk of ICs 

were only capable of carrying out a limited number 

of functions simultaneously. An electrical circuit 

may include a central processing unit (CPU), ROM, 

random access memory (RAM), and several other 

components. VLSI makes it possible to put all of 

them into a single chip. 

The history of the transistor may be traced back to 

the middle of the 1920s, when many inventors 

attempted to change the current that was running 

through solid-state diodes so that they would 

become triodes. This was the first step in the 

development of the transistor. Since the end of the 

Second World War, the production of radar 

detectors using silicon or germanium crystals has 

significantly contributed to the advancement of both 

practical and theoretical knowledge. Researchers 

working in the field of radar have started producing 

solid-state radar systems again. The era of vacuum 

tubes gave way to that of solid-state devices when 

the transistor was invented at Bell Labs in 1947. This 

marked the beginning of the modern technological 

era. 

In the 1950s, mechanical engineers came to the 

realization that the relatively simple transistor might 

be employed in the construction of more complex 
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circuits. However, complications emerged as the 

level of circuit intricacy grew. The magnitude of the 

circuit was one of the issues. The dynamic circuit of 

speed was similar to a machine. The length of the 

wires that are connected to the modules will be 

increased due to the fact that they are through. 

Before the electronic impulses could be sent via the 

device, the circuit had to first slow down the device. 

When Jack Kilby and Robert Noyce built the 

integrated circuit, they solved this issue by 

combining all of the components of the 

semiconductor material into a single block. This 

allowed the integrated circuit to function (monolith). 

This is necessary in order to complete the loops and 

make the manufacturing process more efficient. This 

gave birth to the concept of medium-scale 

convergence in the beginning of the 1960s, which is 

when all of the components are placed on a single 

silicon wafer. (LSI) and VLSI, which incorporate 

hundreds of millions (109) of transistors on a single 

chip, were created by (MSI) in the late 1960s and 

then again in the 1970s and 1980s. (MSI) was a 

pioneer in the field of integrated circuitry. 

Two transistors were included on the first 

semiconductor devices. Eventually, additional 

transistors were added, which resulted in the 

progressive creation of a variety of different features 

or devices. These developments occurred as a direct 

result of the steady addition of more transistors. 

Because the first integrated circuits only required a 

small number of parts—perhaps 10 diodes, 

transistors, resistors, and condensers—it was 

possible to build one or more logic gates on a single 

component. This was made possible by the fact that 

integrated circuits only required a small number of 

components. The advancement of technology has 

led to the creation of systems that include hundreds 

of logic gates. These systems are now referred to as 

medium-scale integration (MSI), while they were 

formerly known as small-scale integration (SSI). 

More advancements were made possible as a result 

of more sophisticated integration (LSI), which refers 

to devices that have at least one thousand logic gates. 

The fact that modern microprocessors have 

hundreds of unique transistors and many millions of 

gates is indicative of how far technology has 

progressed since then. 

A. Engineering for SSI 

The first integrated circuits had a small number of 

transistors. The term "small-scale integration" (SSI) 

refers to the use of logic gates in binary circuits with 

tens-numbering transistors; early linear integrated 

circuits, such as the Plessey SL201 or Philips 

TAA320, featured just two transistors. Rolf 

Landauer, an IBM researcher, was the first to use the 

terms SSI, MSI, VLSI, and ULSI when formulating 

the scientific definition. 

B. Engineering for MSI 

The next phase in the process of building integrated 

circuits was the invention of "small integration" 

(MSI) modules in the late 1960s. These modules 

each included several hundred transistors and were 

the next step in the process of building integrated 

circuits. The fact of the matter is that even if the cost 

of production was comparable to SSI, it would still 

be preferable to produce more complex devices with 

smaller circuit boards, less labor-intensive assembly 

(due to fewer individual components), and a number 

of other advantages. This is because of the fact that 

the reality of the situation is as follows. 

C. LOW Scale Inclusion 

In the middle of the 1970s, a phenomenon known as 

"wider convergence," which consisted of tens of 

thousands of transistors on a single chip, evolved as 

a response to the same economic forces. In the early 

1970s, the production of integrated circuits started in 

small numbers. At that time, the first 

microprocessors, computer chips, and 1K-bit RAMs 

were among the integrated circuits that were created. 

The first true 10,000-transistor LSI circuits for 

device huge memory and second-generation 

microprocessors were invented around 1974. 

Using very large scale integration (VLSI), an effort 

was originally made to calibrate and define various 

degrees of specific integration. developed concepts 

like as (ULSI). However, the many doors and 

transistors that can be seen on modern technology 

serve as a perfect representation of these wonderful 

distinctions. Conditions that are more stringent than 

the VLSI convergence requirements are utilized 

much less often now. 2008 was the year when 

billion-transistor processors were available on the 

commercial market. The manufacture of 

semiconductors progressed, and new 65 nm 

technologies were discovered, which led to an 

increase in its popularity. Recent designs make 

advantage of robust and independent transistor logic 

synthesis, which contributes to an increase in the 

complexity of the logic implementation that is 

produced. In addition, various hand-crafted high-

performance logic blocks, such as the static-random 

access memory (SRAM) cell, have been designed in 

order to get the greatest possible output. 

2.FPGA-BASED TCAM IMPLEMENTATIONS 

When working with FPGAs, the implementation of 

TCAMs may primarily be done in one of two ways. 

The first thing that has to be done is to build the 

TCAM cells and match lines by making use of the 

flip-flops and logic facilities provided by the FPGA. 

The second option is to make advantage of the block 

memory that is available on the FPGA. 
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The bits of the rules are first held by flip-flops since 

this is the most convenient option. As was 

mentioned before, there are three distinct values that 

may be assigned to each bit: 0, 1, and x. For instance, 

a flip-flop can be used to store whether a bit is 0 or 

1, and a second flip-flop, which functions as a mask 

and is set when the bit is do not care, can be used to 

record the result of the first flip-operation. flop's 

Both flip-flops can be used together to record the 

result of an operation. After then, programmable 

circuitry may be used in order to carry out the 

comparison with the key. Because of the significant 

amount of resources that are needed for each rule, 

this strategy cannot be utilized to construct 

enormous TCAMs with tens of thousands of rules 

that are longer than 100 bits and that function 

quickly. 

The second possibility involves making use of the 

FPGA's built-in memories, which are known as 

embedded memories. In order to do this, the key is 

segmented into more manageable chunks of b bits. 

After then, a rule might be reproduced by making 

use of a 1-bit memory that has 2b places for each 

block. When looking for a key, all of the memory is 

accessible by utilizing the bits that correspond to the 

key; a match is found if all of the locations read 

contain a one. In most cases, k rules can be 

implemented with the use of a memory that has k bi 

t locations for each block. An illustration is the most 

effective method for conveying this point. Consider 

a key that is comprised of two blocks that are each 

composed of three bits, bringing the total number of 

bits to six. Then, a TCAM consisting of four rules 

might be used, as seen in Figure 1. As can be seen, 

each memory has a width of 4 bits and a total of 23 

places, which equals 8 different storage spots. The 

three bits at the very top of the key may be used to 

access the memory that is placed the furthest to the 

left, while the three bits at the very bottom of the key 

can be used to access the other memory. When 

reading data from memory, these bits are necessary 

for determining the address of the memory location 

being read from. Figure also demonstrates the rules 

that are kept in each individual bit's storage space. 

1. Let's have a look at the results of a key search for 

the number 000011. We would go closer and closer 

to the commencement of the story. The address on 

the memory on the far left reads 1100, and the 

address on the memory on the far right reads 011, 

with the four position reading 1100. Following the 

AND operation, the only rules that would be 

satisfied are r1 and r2. When we examine the rules 

in more detail, we see that the rules (r4) that are not 

being utilized have zeros in every memory location 

and location. This is visible when we examine the 

rules more carefully. The number of ones that are 

available in a specific memory for the remaining 

rules is determined by the amount of x bits a rule has 

on the address bits that are used as the memory's key 

bits. A one is stored in the one position if there are 

no x bits; whenever there are one or two x bits, the 

two locations store a one; whenever there are three 

or more x bits, the four places store a one; and so on. 

There will typically be a total of 2n x ones on the 

memory if there are n x bits that have the value x. 

 

 

Fig.1 Parity protected TCAM with 6-bit keys

 and four rules emulated using   two SRAMs. 

Now take into consideration the expenses associated 

with the implementation, keeping in mind that each 

block must have b bits of SRAM memory and 

includes b bits of a rule. Using this strategy will 

result in a cost of 2b/b for each SRAM bit required 

for the TCAM bit [13]. Therefore, it would seem that 

lower values of b are more effective. However, this 

is not quite accurate since the amount of mental 

effort required to piece together the structure grows 

in proportion to the number of bricks used. Be aware 

that a significant amount of data stored in a physical 

memory may be partitioned into a number of blocks, 

each of which may execute via different components 

of a rule. At that point, more memory accesses are 

required to complete a search operation; however, it 

is possible to prevent this by using multiport 

memories or running the memory at a quicker speed 

[16]. 

Memory resources for Xilinx FPGAs come in the 

form of either lookup table random access memories 

(LUTRAMs) or basic random access memories 

(BRAMs). The early ones are typically compact 

with 32 or 64 places and are constructed using the 

same lookup tables (LUTs) that are used to 

implement the logic. BRAMs, on the other hand, are 

bigger and can store up to 36 k bits. They are capable 

of being set up with a variety of word sizes, the 

greatest of which is 72 bits, which is equivalent to 

512 locations. As a direct consequence of this, 

LUTRAMs have a cost per bit that is much lower 

(25/5) than BRAMs do (29/9). On the other hand, 
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compared to LUTRAMs, BRAMs have access to a 

greater number of total memory bits. 

An essential finding for the safety of SRAM-based 

TCAM implementations is that just a few 

permutations of all of the potential values are 

utilized, and the contents of the SRAMs are decided 

by the rules that have been stated. This would seem 

to imply that the contents of the SRAM had some 

kind of built-in redundancy that may be used to 

safeguard the memories. This concept will be further 

explored in the next paragraphs of this short text. 

An Energy-Efficient SRAM-Based TCAM on 

FPGA: Ternary content-addressable memory 

(TCAM) chooses a word from the ternary data it has 

saved depending on the information contained inside 

the word. Following completion of one cycle, the 

address of the matched word is obtained by carrying 

out a parallel comparison of the search key and each 

of the TCAM words that have been stored. The 

circuitry of a TCAM cell is responsible for storing, 

as well as comparing, three different states. These 

states are 0, 1, and the don't care state x. A priority 

encoder and a collection of TCAM cells make up the 

TCAM architecture (PE). Each TCAM cell has both 

a comparison circuitry and two SRAM cells, each of 

which may store a ternary bit. Both of these 

components are responsible for storing the bit. In the 

search technique, both search lines (also known as 

SLs) and match lines are used (MLs). 

The SLs give the TCAM words' matching cells with 

search key bits in order to match them. The MLs are 

used to illustrate the comparison findings for each 

each TCAM word. If there is more than one TCAM 

word that successfully matches the search key, the 

PE will choose the address that has the greatest 

priority among the matching addresses. Figure 1 

may depict an example 4 3 TCAM design. Native 

TCAM is a kind of TCAM that was built specifically 

for an application as an integrated circuit system 

(ASIC). 

TCAM is used in a variety of different systems, 

including look-up tables in networking routers [1, 

2], translations-look-aside buffers (TLB) caches in 

microprocessors [3, 4], database accelerators in big-

data analytics [4,5], filters for storing signature 

patterns in the Internet of Things [6, 7], and local 

binary patterns recognition systems in image 

processing and DNA sequence matching [8, 9]. 

However, because of the specialized bit comparison 

circuitry, the memory density of the native TCAM 

cells is decreased. Additionally, because of the high 

degree of parallelism in the system, native TCAM is 

both costly and energy-intensive. In addition, the 

native TCAMs that are built into ASICs have a 

restricted number of configurations, which hampers 

their capacity to adapt to evolving market demands 

and prospective TCAM application trends that may 

emerge in the future. 

 

 

Figure 2 A 4 _ 3 TCAM: (MLSAs: Match 

line sense amplifiers) 

The ability of modern field-programmable gate 

arrays, often known as FPGAs, to enable massive 

parallelism in addition to flexibility via on-the-fly 

reconfiguration makes them an appealing choice for 

the development of new systems. This is because 

tremendous progress has been made in CMOS 

technology, which has led to this outcome. Block 

RAMs, often known as BRAMs, are a prevalent kind 

of embedded memory that is used in contemporary 

SRAM-based FPGA devices such as the 16-nm 

Xilinx Virtex Ultra SCALE FPGA. These BRAMs 

can store large amounts of data. BRAMs are built 

utilizing silicon substrates, and they are capable of 

high speeds while using just a little amount of 

power. 

Integrated memory BRAMs on current SRAM-

based FPGAs are preferred due to the need for rapid, 

adaptable (reconfigurable), and adaptive (easy for 

integration) TCAM design. This is because 

integrated memory BRAMs are easier to integrate. 

SRAM is used to implement TCAM in FPGAs. This 

is done by addressing SRAM with the contents of 

TCAM and storing data for the whole of the TCAM 

table in SRAM. The existence as well as the address 

of a single TCAM pattern is stored in each word of 

SRAM. currently available SRAM-based 

TCAMs on FPGAs have a greater energy use than 

other types of memories because it takes an 

excessive amount of power to activate all of the 

SRAM memory that is required for a lookup. For 

example, the BRAMs on the FPGA were utilized to 

construct 89 kb and 150 kb TCAM tables via the 

SRAM-based TCAM design approaches, which 

required a total of 2.5 Wand and 3.2 Wand, 

respectively. These table sizes were accomplished 

by employing the SRAMs. When capacity rises, the 

already high power consumption of SRAM-based 

TCAM devices becomes even more problematic. 
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3. SOFT ERRORS IN SRAM 

The sensitivity of semiconductor devices to 

radiation has significantly grown as a result of the 

evolution of technology. SRAM arrays are often the 

most densely packed circuitry on a chip because they 

make full use of very small cells. Due to the high bit 

count, there is a greater chance that an ionizing 

particle would collide with a sensitive node in the 

array, therefore erasing the data that was previously 

stored. The lowest layout dimensions reduce the 

capacitance of the storage nodes and, as a result, the 

critical charge Qcrit that might be introduced by 

radiation and cause a disturbance in the SRAM cell. 

The Qcrit is reduced even more as a result of the 

falling supply voltages. Radiation may cause data 

mistakes, which makes it difficult to construct 

dependable SRAM arrays using nano scaled 

technologies. These variables contribute to 

radiation-induced data errors. Radiation may be the 

major cause of localized ionization events in 

semiconductor devices or it may be the outcome of 

a secondary process. A small number of these 

radiation-induced events create a enough number of 

electron-hole pairs to cause damage to the storage 

nodes of SRAM cells. A "soft" mistake is what we 

mean when we say anything like this while we're 

angry. A disturbance of this magnitude might cause 

a data mistake, although the device structures 

themselves are not irreparably harmed. Though the 

voltage disturbance on one of an SRAM cell's 

storage nodes is lower than the node's noise margin, 

the SRAM cell will continue to function correctly 

and will maintain the integrity of the data it stores 

even if the disturbance occurred. 

A "soft" mistake will occur, however, if the noise 

buffer of a cell is insufficient to survive the 

disruption induced by ionizing radiation. This might 

lead to a cell malfunctioning. In the late 1970s, soft 

errors were identified as a potential issue for 

dynamic random-access memories (DRAMs) that 

used planar storage capacitors. The charge that was 

stored in these capacitors was kept in two-

dimensional p-n junctions that covered a huge 

region. Early DRAM cells were very prone to soft 

mistakes because of the high radiation-induced 

charge collection efficiency of the large planar 

reverse-biased connections. Technology advances 

and attempts to lower the high soft error rates and 

poor pause/refresh time ratios of DRAMs (SER) 

(SER) 

As a result, there was an increased need for portable 

three-dimensional storage capacitors. Because of the 

decreased volume of the p/n junction, the newly 

developed 3D capacitors demonstrated a junction 

collection efficiency that was much lower than that 

of the older 2D planar capacitors. Despite the fact 

that a DRAM cell's Qcrit will decrease as a result of 

VDD scaling, the storage capacitor's aggressive 

junction volume growth will more than compensate 

for this loss. Because of this, the SER of a DRAM 

bit cell drops by about 4 times with each new 

generation of technical advancement. 

This decrease in DRAM SER, however, is being 

countered by the rapidity with which the system-

level DRAM bit count is growing. Because bigger 

DRAM arrays are statistically more prone to 

generate soft mistakes, the resultant DRAM SER at 

the system level has remained impressively 

consistent over numerous recent technological 

generations. This is despite the fact that larger 

DRAM arrays are statistically more likely to create 

soft errors. The feedback mechanism that safeguards 

the state of an SRAM cell allowed early SRAMs to 

be more resistant to the effects of soft faults than 

their DRAM counterparts. The critical charge of an 

SRAM cell is impacted in two different ways: first, 

by the restoring current of the pull-up or driver 

transistors, and second, by the capacitance of the 

storage node. 

As a result of scaling in technology, the size of the 

SRAM cell and, therefore, the junction area of the 

storage nodes are both decreasing ( Fig S1). 

Additionally, the capacitance of the storage node 

was decreased, and there is a possibility that the 

leakage at the cell junction was lowered. A more 

aggressive scaling of the VDD was the outcome of 

switching from constant voltage scaling to constant 

electric field scaling. The combined effect of these 

two elements is to lower the Qcrit, which in turn 

leads to an increase in the likelihood of soft 

mistakes, which in turn leads to a rise in SER levels. 

With each new generation of technology, decreases 

in cell collecting efficiency brought on by decreases 

in cell depletion volume were compensated for by 

improvements in storage node and VDD 

capacitance. These changes occurred with each new 

generation of technology. 

 

4. ERROR DETECTION AND CORRECTION 

IN             SRAM – BASED TCAMS 

The emulated TCAM memory is equipped with a 

protection system that employs a per-word parity bit 

in order to identify instances of single-bit mistakes. 

When an error is found, an attempt is made to fix it 

by using the built-in redundancy of the memory 

contents. This is done in the event that the fault 

cannot be corrected. Figure 2 depicts the 

implementation of the parity protection, where the 

letter p stands for the parity bit. It is abundantly clear 

that in addition to the match signal, an error signal is 

also produced if there is a discrepancy between the 

parity that has been saved and the one that has been 

recomputed. This parity check is the industry 

standard, and it can detect any and all single-bit 
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defects [5]. Error detection on each and every access 

is very necessary in order to avoid producing 

inaccurate search results. 

Let's suppose for the time being that a specific word 

had a single-bit mistake and that the parity check 

was able to find it. In the event that a mistake is 

discovered, we can investigate the matter by looking 

at the information stored in the memory. A good 

place to start would be to read every word in the 

memory and make a note of the number of times 

each rule occurs in a single area. This would be a 

nice place to begin. Make use of that number to 

indicate the significance of the rule associated with 

that memory. Taking Fig. 2's leftmost memory as an 

example, r1 would have a weight of 1, r2 would have 

a weight of 2, and r3 would have a weight of 4. It's 

possible that this will assist us in locating the 

incorrect bit, given that the weight of an error-free 

rule for an 8-position memory can only be 0, 1, 2, 4, 

or 8. Let's concentrate on the cases of single-bit 

mistake shown in Fig. 3 so that we can have a more 

in-depth conversation about the process of error 

repair. For example, e3 reduces the weight of r3 in 

the leftmost memory from 4 to 3, making no other 

modifications. After finding the parity mistake, we 

would determine that the bit in register 3 (r3) is the 

one that is incorrect, and then we would correct it 

since 3 is not a legal value. It is possible that using 

this method will be beneficial for rules which either 

have weights greater than two or have two or more 

"x" bits on the key bits relating to the memory in 

question. On the other hand, when it comes to 

regulations that have a smaller weight, it's possible 

that examining the weight alone won't be sufficient. 

Now, let's think about a rule that has a weight of two. 

After then, there will be a blunder that causes a 0 to 

be changed into a 1. 

In order to rectify the situation, the value of the 

weight is going to be raised to three. It is impossible 

to repair the mistake when a one is converted to a 

zero (as in e2) since the new weight would then be a 

legal integer. This occurs when the error occurs in 

the calculation for e2. However, the fact that there 

are only two spots with a one makes the occurrence 

of this event less probable. If we are going to take 

the guideline for weight one as our standard, then an 

error that changes another bit to one will result in a 

weight of two, which is likewise acceptable. 

However, not every possible combination of weights 

two can be implemented. When looking at e4, this is 

really obvious to see. In this scenario, the key values 

000 and 011 would be similar to r2 values of one, 

which are not equivalent to a legitimate rule. r2 

values of one are not equivalent to a valid rule. Most 

of the time, the search will not be successful until the 

place in question matches a key value that is one step 

removed from the initial value. On the other hand, a 

mistake that resets a weight one rule's position from 

one to zero may be remedied by confirming that the 

rule has zero weight on the other memory. This 

corrects the error that caused the position to be reset.  

In this scenario, the rule would be deactivated, and 

there would be no indication that the bit was 

incorrect. If this was not the case, the mistake was 

fixed, and the weight of the rule was increased to 1. 

Last but not least, an inaccuracy in a rule with a 

weight of 0 may also be rectified by evaluating the 

impact of the rule on the other memories in order to 

determine its relative importance. 

 

Fig.3. Examples of   single-bit   errors   on   a   parity   

protected   TCAM   with   6-bit keys and four rules 

emulated using two SRAMs. 

The section that came before it demonstrated how 

several single-bit error patterns may be resolved by 

making advantage of the redundancy that was 

already built into the memory contents. Now that we 

have it figured out, let's calculate out how many 

single-bit error patterns there are in a memory that 

has 2b places that can be repaired for each weight. 

1. There is no weight; errors in patterns may be 

corrected. 

2. Weight one: Everyone, with the exception of 

those who set a bit to one for a place that has an 

address at a distance of one; the sum of these two 

values is equal to 1 b/2b. 

3. The second weight entails that all patterns, with 

the exception of the two that set a position with a one 

to a zero, are able to have their values altered. This 

is the same as 12 divided by 2b. 

All patterns may be corrected up to and including 

level four when using weights four and above. 

The vast majority of the erroneous patterns have 

been, without a doubt, fixed. This idea is made more 

understandable by referring to Table I, which 

provides an overview of the proportion of designs 

that may be modified to accommodate columns with 

varying weights. The only circumstances in which 

all mistakes cannot be rectified are those involving 

weights one and two; in such circumstances, the 

percentage will be extremely close to 100% when b 

is big. The only other circumstance is when all faults 

occur in weights three and four. Table II presents, 

for each of many possible values of b, the proportion 

of mistakes that are amenable to correction. Even 
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with a relatively little amount of memory (b = 5, 

which equates to 32 locations), the error coverage is 

rather near to 90%, even in the worst case scenario, 

as can be shown. The coverage for bigger memories 

is more than 95% and comes very close to reaching 

100%. As an example, the coverage for b = 9 is more 

than 98% even in the most dire of circumstances. 

This demonstrates how successful the suggested 

method is at repairing single-bit mistakes in 

situations where the parity bit is used to ensure 

security for the memory. 

 

5. SYNTHESIS AND IMPLEMENTATION OF 

THE DESIGN 

Before the design can be implemented on the 

prototype board or checked for accuracy using 

functional simulation, it must first be synthesized 

and implemented. This may be done at any time 

throughout the design process. While the top-level 

VHDL file is accessed (by double-clicking that file 

in the HDL editor window on the right section of the 

Project Navigator), the implement design option 

may become accessible in the process view of the 

project. This occurs when the project view is in the 

Module view. In addition, the process view displays 

the available choices for the Generate Programming 

File and Design Entry utilities. In the event that there 

are any user limitations, they might be dealt under 

the former, while the latter will be considered in a 

later section. 

Double-clicking the option in the Processes box that 

is titled "Synthesize Design" will cause you to 

synthesize the design. To get started, double-click 

the "Implement design" option that is located in the 

Processes box. There are several steps involved, 

including Translate, Map, Place & Route, and 

others. Any of these stages that were either 

impossible to finish or were done in an unacceptable 

manner will have a cross superimposed over them. 

In such case, a check mark will be added after each 

activity to show that it was completed without any 

problems. If everything goes according to plan, there 

will be a check mark shown next to the choice to 

Implement Design. In the event that there are any 

cautions, a checkmark will appear in front of the 

option to indicate whether or not there are any 

warnings. The Console window, which may be seen 

at the bottom of the Navigator window, displays any 

warnings or problems that may have occurred. 

Because each of these markers is deleted every time 

the design file is saved, you will need to start the 

compilation process from scratch. 

 

 

FIG.4 Implementing the Design (snapshot from 

Xilinx ISE software) 

The schematic representation of the synthesized 

VHDL code may be examined in the Process 

Window by selecting Synthesize-XST from the 

menu and then selecting View RTL Schematic by 

clicking it twice. This is a useful way for 

troubleshooting the code and would be beneficial in 

the event that the output on the prototype board did 

not meet our needs. 

When you double click, the top-level module will 

open, and all it will show you are the module's inputs 

and outputs, as seen below. 

 

Fig 5 Top Level Hierarchy of the design 

When you double click on the rectangle, the 

underlying logic that has been established is 

revealed, as demonstrated in the following example. 

XilinxISE's implementation of the logic included in 

the VHDL code The ETI simulation has been 

finished successfully with the help of the model 

Xilinx simulator. 
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A. Simulation and synthesis has been carried 

out with XILINX ISE: 

 

Before the design can be implemented on the 

prototype board or checked for accuracy using 

functional simulation, it must first be synthesized 

and implemented. This may be done at any time 

throughout the design process. The implement 

design option becomes accessible in the process 

view when the top-level VHDL file is opened (by 

double-clicking that file in the HDLeditor window 

located on the right side of the Project Navigator) 

and the project is shown in the Module view. 

In addition, the process view displays the available 

choices for the Generate Programming File and 

Design Entry utilities. In the event that there are any 

user limitations, they might be dealt under the 

former, while the latter will be considered in a later 

section. Double-clicking the option in the Processes 

box that is titled "Synthesize Design" will cause you 

to synthesize the design. In order to put the plan into 

action, 

To implement the design, double-click the 

corresponding option in the Processes pane. There 

are several steps involved, including Translate, Map, 

Place & Route, and others. Any of these stages that 

were either impossible to finish or were done in an 

unacceptable manner will have a cross 

superimposed over them. In such case, a check mark 

will be added after each activity to show that it was 

completed without any problems. If everything goes 

according to plan, there will be a check mark shown 

next to the choice to Implement Design. 

One may be able to see the warnings, if there are 

any! Put a checkmark in front of the choice to let 

consumers know that there are certain precautions 

they should take. The Console window, which may 

be seen at the bottom of the Navigator window, 

displays any warnings or problems that may have 

occurred. When the file containing the design is 

saved, each of these markers is removed, which 

means that a new compilation will need to be done. 

If you double click the View RTL Schematic option 

in the Synthesize-XST menu in the Process 

Window, you will be able to view the schematic 

diagram that corresponds to the VHDL code that 

was synthesized. If the output on the prototype board 

did not match our standards, then this would be a 

helpful approach for debugging the code. 

Simply clicking the plus symbol that is located next 

to the Modelsim simulator Tab in the Processes 

window will allow you to make it larger (while 

making sure the test bench file in the Sources 

window is chosen). You need to click the Simulate 

Behavioral Model button a total of two times. There 

is a good chance that you may run across a compiler 

error. When asked whether you want to quit the 

simulation, choose "NO" from the drop-down menu. 

There is nothing to be afraid of in this situation. As 

a direct result of this, ModelSim ought to begin 

running. Continue to watch it until it stops moving. 

 

B. Technology schematic of crc Block replaced by 

XOR gate in ETI architecture 

6. EXPERIMENTAL RESULTS 

RTL 
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CONCLUSION 

In this paper, a method is proposed for securing the 

SRAMs that are present on FPGAs and serve the 

purpose of simulating TCAMs. The technique is 

founded on the discovery that while not all values 

may be obtained in those SRAMs, there are certain 

degrees of duplication in the memory contents. This 

observation is the foundation for the method. When 

the memory is secured with a parity bit to detect 

faults, this redundancy is employed to rectify the 

majority of single-bit error patterns so that the 

memory can function properly. Because the 

suggested method reduces the amount of resources 

required to safeguard memory by a large margin, it 

is an attractive choice for implementation in systems 

in which dependability is essential but resources are 

in short supply. 

This condensed description of the underlying idea 

may be used for a variety of memory architectures. 

For example, by routinely evaluating the accuracy of 

an unprotected memory, it might be used to locate 

problems in the memory and determine how to fix 

them. It is possible to utilize it to rectify numerous 

bit mistakes in the memory when it is protected by a 

more robust code that is able to notice a string of 

faults in succession. For instance, double-bit error 

patterns for a memory that is guarded by an SEC 

code may be identified and corrected by the use of 

the built-in redundancy of the memory's contents. 
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