
 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

35

Deign Of Multi Data Functional Based

Fipflop For High-Speed Data

Communication System
Vemuganti Laxmi Prasanna

MTech Student, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: prasannavemuganti@gmail.com

Dr.S. Kishore Reddy
Associate professor, HOD, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: kishorereddy416@gmail.com

D Suryaprakesh
Assistant professor, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: kishorereddy416@gmail.com

Abstract—To increase system composability and

facilitate timing closure, fully synchronous clocking is

replaced by more relaxed clocking schemes, such as

mesochromous clocking. Under this regime, the modules

at the two ends of a monochromous interface receive the

same clock signal, thus operating under the same clock

frequency, but the edges of the arriving clock signals may

exhibit an unknown phase relationship. In such cases,

clock synchronization is needed when sending data

across modules. In this brief, we present a novel

mesochromous dual-clock first-input– first-output

(FIFO) buffer that can handle both clock

synchronization and temporary data storage, by

synchronizing data implicitly through the explicit

synchronization of only the flow-control signals. The

proposed design can operate correctly even when the

transmitter and the receiver are separated by a long link

whose delay cannot fit within the target operating

frequency. In such scenarios, the proposed

mesochromous FIFO can be extended to support

multicycle link delays in a modular manner and with

minimal modifications to the baseline architecture.

When compared with the other state-of-the-art dual-

clock mesochromous FIFO designs, the new architecture

is demonstrated to yield a substantially lower cost

implementation

 Key Words- synchronization, FIFO, clock signals,

mesochromous

Manuscript received Oct 10, 2022; Revised Oct 25, 2022; Accepted

Nov 4, 2022

I. INTRODUCTION

Ever shrinking transistor sizes have enabled the

integration of a greater number of components onto a

single chip—thus making systems-on-a-chip (SoCs)

with many complex modules a common design

solution. Unfortunately, global interconnect scaling

has not been able to maintain the same performance

increases [1], causing the timing of high-speed global

clock signals to become a major concern in system

design. This has resulted in clock distribution circuits

requiring increasing circuit resources and design time.

Nearly all existing digital systems utilize synchronous

design techniques which normally require an accurate

and highly synchronized global clock reference to be

supplied to all areas of the circuit. One solution for

coping with the clock distribution problem is to utilize

self-timed or asynchronous circuits, which do not have

a global timing reference signal. However, the lack of

mature design tools and the reluctance of industry to

incur the cost and risk of moving away from successful

synchronous design flows have limited the acceptance

of these design styles [2]. An alternative approach is to

create systems that mix asynchronous and

synchronous design techniques using a globally

asynchronous locally synchronous (GALS) [3] design

approach. In this paradigm, blocks are built using

traditional synchronous design techniques, but these

synchronous blocks do not share global timing

https://www.openaccess.nl/en/open-publications
mailto:kishorereddy416@gmail.com
mailto:kishorereddy416@gmail.com

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

36

information and are asynchronous with respect to each

other. While it is often convenient to divide a system

into multiple subcomponents, it is unlikely that these

components will operate autonomously. Accordingly,

data transfer is required between local synchronous

blocks. Accomplishing this task reliably and

efficiently are key challenges in GALS designs

II. LITERATURE SURVEY

Dally and Poulton [4] and Balch [5] present high-

level views of dual-clock FIFO structures, but details

of dual-clock FIFO designs are lacking in the

literature. Fully asynchronous FIFOs often appear in

the literature [6], [7], but these designs do not utilize

clocks, and therefore, are difficult to apply in cases of

synchronizing da ta between clock domains. Table I

lists several dual-clock FIFO designs. In the work

presented by Greenstreet [8], the clocks are derived

from the same base frequency, but may have an

arbitrary phase difference—which is slightly more

general than strict mesochronous The FIFO designed

by Chakraborty et al. requires time to develop a

frequency difference estimate before transferring data,

as well as usage of different circuits depending on

which clock domain has the higher rate [9]. Siezovic

[10] presents a linear FIFO architecture for data

synchronization, which has the limitations presented

in Section II-A. An alternative FIFO architecture for

use in some dual-clock applications is presented by

Chelcea and Nowick [11]. The design uses

independent registers as storage elements, and each

register has its own and signals. This scheme reduces

the latency when the FIFO size is small, but is less

suitable when the FIFO size is large. This work uses a

dual-port SRAM as the storage element which

increases memory density and improves FIFO size

scalability [13]. Compared with the most similar

previous work [12], this design includes configurable

logic to make it suitable for many environments, and

also enables complete oscillator halting during idle

times to achieve high energy efficiency. The proposed

FIFO design has been fabricated in what we believe is

the first VLSI implementation of a GALS array

processor.

III.EXISTING SYSTEM

To best address dual-clock FIFO issues, we first

consider the case of a single-clock synchronous FIFO.

This section covers these fundamental FIFO

principles.

Figure 1. Linear shift-register FIFO block diagram.

A. Linear FIFOs

 The simplest FIFO structure consists of a linear chain

of latches or flip-flops connected serially as a shift

register. Data is shifted into one end of the chain and

propagates through every memory element until it

reaches the end as shown in Fig. 1. This FIFO is

synchronous since all movement of data requires a

common clock. Alternatively, a linear elastic FIFO

uses control signal handshakes to propagate data from

location to location. Unlike the synchronous case, a

datum can propagate through the FIFO without any

new items entering. This results in the FIFO being at

various degrees of fullness, hence, the name elastic.

FIFOs of this nature work well with asynchronous

designs and many examples of these can be found in

the literature [15], [16]. A simple example of this type

of FIFO is shown in Fig. 2.

Figure 2. Linear elastic FIFO block diagram.

IV.PROPOSED SYSTEM

Modern systems-on-chip (SoC) implemented in

deeply scaled technologies faces slow wires and

process/voltage/temperature (PVT) variations. These

challenges make the synchronous abstraction

increasingly untenable over large chip areas, thereby

requiring immense design effort to achieve timing

closure [1], [2]. Partitioning the SoC into globally

asynchronous, locally synchronous domains [3], [4]

partially alleviate the problem, since synchronous

operation and its associated timing constraints are

confined inside each domain. However, in this case,

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

37

when crossing clock domains, the signals must be

synchronized to the receiving clock domain, in order

to avoid metastability [5], [6].

In addition to delivering synchronized signals across

the clock domain interface, it is also important to

ensure that any synchronized data that cannot be

immediately consumed by the receiving domain are

safely stored until it can be serviced. Since data must

both be synchronized and (temporarily) stored, it is

imperative that these two elemental and intertwined

operations—synchronization and buffering—are

combined in a cost-effective way that minimizes any

latency and area overhead. In this brief, we focus on

mesochromous clock domains, where clocks operate

under the same frequency, but with a fixed, arbitrary

phase difference. In such cases, using a generic

asynchronous dual-clock first-input–first-output

(FIFO) [7] for mesochromous clock domain, crossing

is possible, but incurs unnecessary latency overhead

[8]. Currently, there are two major approaches for

efficient synchronization and buffering across

mesochronic interfaces: 1) in a loosely coupled

implementation [8], synchronization and buffering

occur separately while 2) in a tightly coupled

implementation [9]–[11], they are combined and fused

into a single structure.

A. Proposed Mesochromous Fifo

The proposed mesochromous FIFO architecture

combines the benefits of the loosely coupled [8] and

tightly coupled approaches [9], [10], while avoiding

their weaknesses. The new design couples

synchronization and buffering in a cost-efficient

implementation that fully supports multicycle link

delays. A completely different operating approach is

adopted, whereby the data are synchronized implicitly

through the explicit synchronization of flow-control

signals.

B. Architecture and Operation

Fig.1 shows the proposed mesochromous FIFO. Data

that need to be synchronized are stored in a memory

placed in the transmitter domain. Two monotonically

increasing counters index the memory positions,

where data are stored and accessed. The transmitter-

synchronous tail pointer points to the write position in

memory where a new data word is stored, while the

receiver-synchronous head pointer points to the

position from where a word will be read out. A pair of

opposite-direction single-bit 4-flop synchronizers are

used to sync enqueue (write) and dequeue (consume)

events between the two sides. The 4-flop

synchronizers are used to account for the worst case

scenario that can occur with the asynchronous reset of

the read and write pointers, as described in [8]. When

the transmitter sends a data word that needs to be

synchronized, it writes the data into the memory

position pointed by the tail pointer. At the same time,

the tail pointer is increased, and the push signal that is

fed to the forward “tx2rx” mesochromous

synchronizer [see Fig. 4(a)] is asserted. When the

enqueue event is synchronized across the interface, the

receiver can safely read out the data from the memory

position pointed by the head pointer. This operation is

shown in the short example of Fig. 4(b), which depicts

the transfer of three data words (“A,” “B,” and “C”)

from TX to RX. Once the receiver actually consumes

the data (e.g., reads it and sends it downstream), the

pop signal is asserted, and the head pointer is

incremented to point to the position where the next

data word is found. Note that the receiver does not try

to read data from the updated head pointer position,

unless a new push event has been synchronized,

indicating that new data exist and are safe to be read

out.

In order to not lose track of multiple enqueue

events, the receiver employs a “status” counter that

counts the number of synchronized data items

currently in the queue. Whenever a new data word is

received, as indicated by an incoming enqueue signal

from the “tx2rx” synchronizer in Fig. , the counter is

increased; when a data word is consumed, the counter

is decreased to reflect the change in the queue’s state.

In this way, two key objectives are achieved: 1) data

are implicitly synchronized through the explicit

synchronization of the enqueue events and 2) the FIFO

order is preserved in the buffer. The next step is to

synchronize the queue’s state to the transmitter

domain and guarantee that the queue does not

overflow. To achieve this, the transmitter also uses a

status counter, as shown in Fig. 4(a), to keep its own

version of the number of items currently stored in the

queue. The counter is incremented, or decremented,

whenever an item is enqueued, or dequeued, from the

queue, respectively. Since dequeue (pop) events are

receiver-synchronous, they have to be synchronized to

the transmitter domain through a separate backward

synchronizer. On a dequeue, the receiver asserts the

pop signal of the “rx2tx” synchronizer. Once the signal

is synchronized, the transmitter decreases its status

counter, effectively remaining in sync with the

downstream buffer’s state.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

38

Figure 3. (a) Proposed mesochromous FIFO, which implicitly

synchronizes data through the explicit synchronization of the flow-

control push/pop signals. (b) Short cycle-by-cycle example of the

operation of the proposed design.

Similar to [8], the forward latency of

synchronizing and enqueuing a new data item is

between one and three cycles, depending on he spread

between the read and write pointers after reset. For

safe operation under any phase difference, the initial

spread between the read and write pointers at each

synchronizer is two. When the reset of the read pointer

of the push synchronizer is delayed (due to

metastability), the forward latency is increased by one

cycle. On the contrary, if the reset of the write pointer

is delayed, the forward latency is decreased. In the case

that the reset signal is not delayed, or delayed on both

sides, the forward latency remains unchanged. The

backward latency, i.e., the number of cycles needed to

synchronize the pop events, is also between one and

three cycles. However, worst case forward and

backward latencies cannot occur simultaneously. The

read pointer of the push synchronizer is driven by the

same reset signal (the rx-side-synchronized version of

the asynchronous reset) with the write pointer of the

pop synchronizer. The same happens with the write

and read pointers that are driven by the reset signal

synchronized to the tx side. Therefore, once one side

experiences a latency of three cycles (delayed reset of

the read pointer), the other side will experience a

latency of one cycle (delayed reset of the write

pointer). Overall, the sum of the forward and backward

latencies is constant at four cycles.

V.CONCLUSION

Irrespective of the physical proximity of the

sender and the receiver in a mesochromous clock

interface, the proposed low-cost dual-clock FIFO

combines mesochromous clock synchronization and

buffering in a scalable manner. Data are safely

transferred on the receiver side of a mesochromous

interface without being explicitly synchronized.

Synchronization involves only the single-bit push/pop

flow-control signals. This implicit synchronization of

data saves considerable amount of area/power,

especially in the case of multicycle links, without

introducing additional latency, or reducing through.

References

[1]. Burchardt, A., Hekstra-Nowacka, E., and Chauhan,

A.,“A Real-time Streaming Memory Controller”, Design,

Automation and Test in Europe 2005 Proceedings, 2005,

vol.3, pp. 20-25.

[2]. Heithecker, S. and Ernst, R., “Traffic Shaping for An

FPGA Based SDRAM Controller with Complex

QoSRequirements”, Design Automation Conference 2005,

June 2005, pp. 575-578.

[3]. ANALOG DEVICES, AD9480 datasheet, Rev. A, 2004,

7.

[4]. ALTERA, DDR SDRAM Controller White Paper,

Ver1.1, 2002, 8.

[5]. Guo Li, Zhang Ying, Li Ning, and Guo Yang, “The

Feature of DDR SDRAM and the Implementation of DDR

SDRAM Controllers via VHDL”, The Journal of China

Universities of Posts and Telecommunications, 2002,

vol.9,no. 1, pp. 61-65.

[6]. Digital Systems Design Using VHDL by Charles H.

Roth, Jr

[7]. CMOS Designing by Kanzg

[8]. Basic Digital Design by Morris Mano

[9].http://www.latticesemi.com/products/intellectualpropert

y/referencedesigns/ddrsdram controller.cfm

https://www.openaccess.nl/en/open-publications

