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Abstract—To increase system composability and 

facilitate timing closure, fully synchronous clocking is 

replaced by more relaxed clocking schemes, such as 

mesochromous clocking. Under this regime, the modules 

at the two ends of a monochromous interface receive the 

same clock signal, thus operating under the same clock 

frequency, but the edges of the arriving clock signals may 

exhibit an unknown phase relationship. In such cases, 

clock synchronization is needed when sending data 

across modules. In this brief, we present a novel 

mesochromous dual-clock first-input– first-output 

(FIFO) buffer that can handle both clock 

synchronization and temporary data storage, by 

synchronizing data implicitly through the explicit 

synchronization of only the flow-control signals. The 

proposed design can operate correctly even when the 

transmitter and the receiver are separated by a long link 

whose delay cannot fit within the target operating 

frequency. In such scenarios, the proposed 

mesochromous FIFO can be extended to support 

multicycle link delays in a modular manner and with 

minimal modifications to the baseline architecture. 

When compared with the other state-of-the-art dual-

clock mesochromous FIFO designs, the new architecture 

is demonstrated to yield a substantially lower cost 

implementation 
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I. INTRODUCTION 

 

Ever shrinking transistor sizes have enabled the 

integration of a greater number of components onto a 

single chip—thus making systems-on-a-chip (SoCs) 

with many complex modules a common design 

solution. Unfortunately, global interconnect scaling 

has not been able to maintain the same performance 

increases [1], causing the timing of high-speed global 

clock signals to become a major concern in system 

design. This has resulted in clock distribution circuits 

requiring increasing circuit resources and design time. 

Nearly all existing digital systems utilize synchronous 

design techniques which normally require an accurate 

and highly synchronized global clock reference to be 

supplied to all areas of the circuit. One solution for 

coping with the clock distribution problem is to utilize 

self-timed or asynchronous circuits, which do not have 

a global timing reference signal. However, the lack of 

mature design tools and the reluctance of industry to 

incur the cost and risk of moving away from successful 

synchronous design flows have limited the acceptance 

of these design styles [2]. An alternative approach is to 

create systems that mix asynchronous and 

synchronous design techniques using a globally 

asynchronous locally synchronous (GALS) [3] design 

approach. In this paradigm, blocks are built using 

traditional synchronous design techniques, but these 

synchronous blocks do not share global timing 
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information and are asynchronous with respect to each 

other. While it is often convenient to divide a system 

into multiple subcomponents, it is unlikely that these 

components will operate autonomously. Accordingly, 

data transfer is required between local synchronous 

blocks. Accomplishing this task reliably and 

efficiently are key challenges in GALS designs 

 

II. LITERATURE SURVEY 

 

Dally and Poulton [4] and Balch [5] present high-

level views of dual-clock FIFO structures, but details 

of dual-clock FIFO designs are lacking in the 

literature. Fully asynchronous FIFOs often appear in 

the literature [6], [7], but these designs do not utilize 

clocks, and therefore, are difficult to apply in cases of 

synchronizing da ta between clock domains. Table I 

lists several dual-clock FIFO designs. In the work 

presented by Greenstreet [8], the clocks are derived 

from the same base frequency, but may have an 

arbitrary phase difference—which is slightly more 

general than strict mesochronous The FIFO designed 

by Chakraborty et al. requires time to develop a 

frequency difference estimate before transferring data, 

as well as usage of different circuits depending on 

which clock domain has the higher rate [9]. Siezovic 

[10] presents a linear FIFO architecture for data 

synchronization, which has the limitations presented 

in Section II-A. An alternative FIFO architecture for 

use in some dual-clock applications is presented by 

Chelcea and Nowick [11]. The design uses 

independent registers as storage elements, and each 

register has its own and signals. This scheme reduces 

the latency when the FIFO size is small, but is less 

suitable when the FIFO size is large. This work uses a 

dual-port SRAM as the storage element which 

increases memory density and improves FIFO size 

scalability [13]. Compared with the most similar 

previous work [12], this design includes configurable 

logic to make it suitable for many environments, and 

also enables complete oscillator halting during idle 

times to achieve high energy efficiency. The proposed 

FIFO design has been fabricated in what we believe is 

the first VLSI implementation of a GALS array 

processor. 

 

III.EXISTING SYSTEM 

 

To best address dual-clock FIFO issues, we first 

consider the case of a single-clock synchronous FIFO. 

This section covers these fundamental FIFO 

principles. 

 

Figure 1. Linear shift-register FIFO block diagram. 

A. Linear FIFOs 

 The simplest FIFO structure consists of a linear chain 

of latches or flip-flops connected serially as a shift 

register. Data is shifted into one end of the chain and 

propagates through every memory element until it 

reaches the end as shown in Fig. 1. This FIFO is 

synchronous since all movement of data requires a 

common clock. Alternatively, a linear elastic FIFO 

uses control signal handshakes to propagate data from 

location to location. Unlike the synchronous case, a 

datum can propagate through the FIFO without any 

new items entering. This results in the FIFO being at 

various degrees of fullness, hence, the name elastic. 

FIFOs of this nature work well with asynchronous 

designs and many examples of these can be found in 

the literature [15], [16]. A simple example of this type 

of FIFO is shown in Fig. 2. 

 

Figure 2. Linear elastic FIFO block diagram. 

IV.PROPOSED SYSTEM 

 

Modern systems-on-chip (SoC) implemented in 

deeply scaled technologies faces slow wires and 

process/voltage/temperature (PVT) variations. These 

challenges make the synchronous abstraction 

increasingly untenable over large chip areas, thereby 

requiring immense design effort to achieve timing 

closure [1], [2]. Partitioning the SoC into globally 

asynchronous, locally synchronous domains [3], [4] 

partially alleviate the problem, since synchronous 

operation and its associated timing constraints are 

confined inside each domain. However, in this case, 
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when crossing clock domains, the signals must be 

synchronized to the receiving clock domain, in order 

to avoid metastability [5], [6].  

In addition to delivering synchronized signals across 

the clock domain interface, it is also important to 

ensure that any synchronized data that cannot be 

immediately consumed by the receiving domain are 

safely stored until it can be serviced. Since data must 

both be synchronized and (temporarily) stored, it is 

imperative that these two elemental and intertwined 

operations—synchronization and buffering—are 

combined in a cost-effective way that minimizes any 

latency and area overhead. In this brief, we focus on 

mesochromous clock domains, where clocks operate 

under the same frequency, but with a fixed, arbitrary 

phase difference. In such cases, using a generic 

asynchronous dual-clock first-input–first-output 

(FIFO) [7] for mesochromous clock domain, crossing 

is possible, but incurs unnecessary latency overhead 

[8]. Currently, there are two major approaches for 

efficient synchronization and buffering across 

mesochronic interfaces: 1) in a loosely coupled 

implementation [8], synchronization and buffering 

occur separately while 2) in a tightly coupled 

implementation [9]–[11], they are combined and fused 

into a single structure.  

A. Proposed Mesochromous Fifo  

 

The proposed mesochromous FIFO architecture 

combines the benefits of the loosely coupled [8] and 

tightly coupled approaches [9], [10], while avoiding 

their weaknesses. The new design couples 

synchronization and buffering in a cost-efficient 

implementation that fully supports multicycle link 

delays. A completely different operating approach is 

adopted, whereby the data are synchronized implicitly 

through the explicit synchronization of flow-control 

signals.  

 

B. Architecture and Operation  

 

Fig.1  shows the proposed mesochromous FIFO. Data 

that need to be synchronized are stored in a memory 

placed in the transmitter domain. Two monotonically 

increasing counters index the memory positions, 

where data are stored and accessed. The transmitter-

synchronous tail pointer points to the write position in 

memory where a new data word is stored, while the 

receiver-synchronous head pointer points to the 

position from where a word will be read out. A pair of 

opposite-direction single-bit 4-flop synchronizers are 

used to sync enqueue (write) and dequeue (consume) 

events between the two sides. The 4-flop 

synchronizers are used to account for the worst case 

scenario that can occur with the asynchronous reset of 

the read and write pointers, as described in [8]. When 

the transmitter sends a data word that needs to be 

synchronized, it writes the data into the memory 

position pointed by the tail pointer. At the same time, 

the tail pointer is increased, and the push signal that is 

fed to the forward “tx2rx” mesochromous 

synchronizer [see Fig. 4(a)] is asserted. When the 

enqueue event is synchronized across the interface, the 

receiver can safely read out the data from the memory 

position pointed by the head pointer. This operation is 

shown in the short example of Fig. 4(b), which depicts 

the transfer of three data words (“A,” “B,” and “C”) 

from TX to RX. Once the receiver actually consumes 

the data (e.g., reads it and sends it downstream), the 

pop signal is asserted, and the head pointer is 

incremented to point to the position where the next 

data word is found. Note that the receiver does not try 

to read data from the updated head pointer position, 

unless a new push event has been synchronized, 

indicating that new data exist and are safe to be read 

out.  

In order to not lose track of multiple enqueue 

events, the receiver employs a “status” counter that 

counts the number of synchronized data items 

currently in the queue. Whenever a new data word is 

received, as indicated by an incoming enqueue signal 

from the “tx2rx” synchronizer in Fig. , the counter is 

increased; when a data word is consumed, the counter 

is decreased to reflect the change in the queue’s state. 

In this way, two key objectives are achieved: 1) data 

are implicitly synchronized through the explicit 

synchronization of the enqueue events and 2) the FIFO 

order is preserved in the buffer. The next step is to 

synchronize the queue’s state to the transmitter 

domain and guarantee that the queue does not 

overflow. To achieve this, the transmitter also uses a 

status counter, as shown in Fig. 4(a), to keep its own 

version of the number of items currently stored in the 

queue. The counter is incremented, or decremented, 

whenever an item is enqueued, or dequeued, from the 

queue, respectively. Since dequeue (pop) events are 

receiver-synchronous, they have to be synchronized to 

the transmitter domain through a separate backward 

synchronizer. On a dequeue, the receiver asserts the 

pop signal of the “rx2tx” synchronizer. Once the signal 

is synchronized, the transmitter decreases its status 

counter, effectively remaining in sync with the 

downstream buffer’s state. 
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Figure 3. (a) Proposed mesochromous FIFO, which implicitly 

synchronizes data through the explicit synchronization of the flow-

control push/pop signals. (b) Short cycle-by-cycle example of the 

operation of the proposed design. 

Similar to [8], the forward latency of 

synchronizing and enqueuing a new data item is 

between one and three cycles, depending on he spread 

between the read and write pointers after reset. For 

safe operation under any phase difference, the initial 

spread between the read and write pointers at each 

synchronizer is two. When the reset of the read pointer 

of the push synchronizer is delayed (due to 

metastability), the forward latency is increased by one 

cycle. On the contrary, if the reset of the write pointer 

is delayed, the forward latency is decreased. In the case 

that the reset signal is not delayed, or delayed on both 

sides, the forward latency remains unchanged. The 

backward latency, i.e., the number of cycles needed to 

synchronize the pop events, is also between one and 

three cycles. However, worst case forward and 

backward latencies cannot occur simultaneously. The 

read pointer of the push synchronizer is driven by the 

same reset signal (the rx-side-synchronized version of 

the asynchronous reset) with the write pointer of the 

pop synchronizer. The same happens with the write 

and read pointers that are driven by the reset signal 

synchronized to the tx side. Therefore, once one side 

experiences a latency of three cycles (delayed reset of 

the read pointer), the other side will experience a 

latency of one cycle (delayed reset of the write 

pointer). Overall, the sum of the forward and backward 

latencies is constant at four cycles. 

V.CONCLUSION 

 

Irrespective of the physical proximity of the 

sender and the receiver in a mesochromous clock 

interface, the proposed low-cost dual-clock FIFO 

combines mesochromous clock synchronization and 

buffering in a scalable manner. Data are safely 

transferred on the receiver side of a mesochromous 

interface without being explicitly synchronized. 

Synchronization involves only the single-bit push/pop 

flow-control signals. This implicit synchronization of 

data saves considerable amount of area/power, 

especially in the case of multicycle links, without 

introducing additional latency, or reducing through. 
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