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Abstract - Plant diseases threaten farmers, consumers, the 

environment, and the economy. Pathogens and pests cause 35% of 

crop losses in India. Many pesticides are toxic and biomagnified, 

thus indiscriminate usage is dangerous. Early disease detection, 

crop monitoring, and targeted treatments may avert these effects. 

Most agricultural ailments are identified by external indicators. 

Farmers need expert help. Our platform automatically diagnoses, 

tracks, and forecasts illnesses. Farmers may use a smartphone app 

to rapidly and accurately diagnose plant diseases and discover 

solutions. Using AI algorithms for cloud image processing, real-

time diagnosis is conceivable. The AI model learns from user-

uploaded photos and expert advice. Farmers may contact regional 

experts online. A cloud-based library of geo-tagged pictures and 

micro-climatic information is utilised to build disease density maps 

with spread predictions. Experts may analyse diseases using web-

based spatial visualisations. In our investigations, the AI model 

(CNN) was trained using disease datasets created from plant 

photographs taken over 7 months from several farms. Plant 

pathologists accepted the CNN model's picture diagnoses. Diseases 

were identified with 95% accuracy. Our technique offers a novel, 

adaptive disease management tool. Farmers and industry experts 

may utilise this cloud-based service to produce ecologically friendly 

crops. 

Keywords - Crop Diseases, Agriculture, Artificial Intelligence, 

Cloud, CNN, Mobile, Plant Pathology, Neural Networks 

 I.INTRODUCTION 

Human survival relies on agriculture. In rapidly 

developing countries with a high population density like India, it 

is of utmost importance to increase agricultural, fruit, and 

vegetable yields. Both the quality and production of the products 

must be kept at a high level in order to enhance public health. 

However, issues such as the spread of illnesses that may have 

been contained by earlier diagnosis are a barrier to both 

production and the quality of the food produced. The fact that 

many of these diseases may be spread from person to person 

results in a total loss of agricultural yield. Because of the 

widespread geographic dispersion of agricultural fields, the low  
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education levels of farmers, the restricted expertise, and the lack 

of access to plant pathologists, human-assisted disease diagnosis 

is inadequate and unable to keep up with the excessive demand. 

 

It is vital to automate crop disease diagnosis using 

technology and build low-cost, reliable machine assisted 

diagnostic that is widely accessible in order to solve the 

drawbacks of human helped disease detection. This may be 

accomplished by developing machine aided diagnostics. The 

agricultural industry is facing a wide range of challenges, but 

recent developments in computer vision and robotics have made 

it possible to tackle some of these problems. The use of image 

processing as a tool to enhance precision agriculture methods, 

weed and pesticide technologies, monitoring plant growth, and 

the regulation of plant nutrition has been the subject of research. 

[1][2]. Discovered by plant pathologists through the visual 

examination of physical signs such as observable colour 

changes, wilting, the emergence of spots and lesions, etc., as 

well as soil and environmental factors. Despite the fact that 

many plant diseases can be automatically diagnosed, 

advancement in this area is still considered to be primitive. The 

commercial level of investment in combining agriculture and 

technology is still at a lower overall level compared to 

investments made in more profitable areas such as human health 

and education. Promising research efforts have not been able to 

materialise because of hurdles such as access and connectivity 

for farmers to plant pathologists, high implementation costs, and 

the scalability of solutions. 

 

Because of recent developments in mobile technology, 

cloud computing, and artificial intelligence, it is now feasible to 

create a solution to agricultural illnesses that is both scalable and 

inexpensive, as well as one that can be utilised by a large 

number of people (AI). It is becoming usual in developing 

countries like India to find people using mobile devices that have 

internet connection. People are able to submit images with 

geolocation information by using commonly available low-cost 

mobile phones equipped with cameras and GPS. They have the 

capability to connect with more modern cloud-based backend 
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services, which can carry out compute-intensive tasks, maintain 

a centralised database, and conduct out data analytics over 

widely available mobile networks. An further development in 

technology is that in recent years, the capacity of AI-based 

image analysis to properly recognise and categorise photographs 

has exceeded that of the human eye. This is a significant step 

forward in the field. The underlying artificial intelligence 

algorithms make use of something called neural networks (NN), 

which are comprised of many layers of neurons and a connection 

structure that is based on the visual cortex.  

 

These networks are "trained" using a large number of 

previously recognised, or "labelled," photos in order to obtain a 

high level of accuracy in image classification when applied to 

new, previously unseen photographs. Since 2012, when 

"AlexNet" was declared the winner of the ImageNet competition 

[3,] deep convolutional neural networks, often known as CNNs, 

have been widely regarded as the most effective architecture for 

computer vision and image processing.  

 

The breakthrough in CNN capabilities may be 

attributed to many factors, including advances in processing 

power, the accessibility of large-scale data sets, and the creation 

of more effective NN algorithms. The field of artificial 

intelligence (AI) has grown and improved because to open 

source platforms such as TensorFlow, in addition to being more 

affordable and accessible [4]. Examples of earlier works that are 

pertinent to our investigation include spectrum patterns, RGB 

pictures, spectral patterns, fluorescence imaging spectroscopy, 

and efforts to gather photographs of healthy and diseased crops 

[5, 6, 7, 8, 9].  

 

Historically, neural networks have been used to the 

problem of diagnosing plant diseases, with the caveat that the 

process included identifying certain textural qualities. Our 

strategy takes use of the advancement of mobile technology, 

cloud computing, and artificial intelligence in order to provide 

an end-to-end crop diagnostic system that duplicates the 

knowledge ("intelligence") of plant pathologists and places it at 

the forefront of the process. It also provides a collaborative 

method to continually increasing the sickness database and 

obtaining expert advice when it is essential in order to improve 

the NN classification accuracy and keep track of epidemics. 

 

II. AN END-TO- END SOLUTION FOR CROP DIAGNOSIS 

Plant disease diagnostics are provided to farmers through our 

proposed solution, which takes the form of a scalable and 

collaborative platform hosted in the cloud. Users may take 

photographs of a variety of plant parts, and the website will 

immediately and automatically diagnose the ailment that is 

affecting the plant. 

 

Fig. 1. System architecture with Cloud and Mobile components 

The platform may be accessed via a downloadable mobile 

application. In addition to this, they might look at a map that 

illustrates the "disease density" of their area and how diseases 

are distributed geographically. Our artificial intelligence 

system classifies the provided picture according to the 

appropriate illness category and then offers the user a 

treatment that has been recognised in the past as being the 

most effective one. The time stamp and geolocation of the 

snapshot are used in conjunction with one another to 

concurrently tag the existence of the particular sickness in 

that area. On a map, the overall density of diseases that are 

kept in a cloud database is shown, together with their location 

in relation to the user. 

A map depicting the prevalence of illnesses in the area may 

also be seen by the user (if location service is enabled on the 

phone). The mobile application is comprised of a total of 

eight screens (sign-in with mobile number, main page with 

options, capture new image, load existing image, get disease 

type, get disease maps, history and expert connect). Java, 

Android Studio 3.1.3, and the Google Camera and Maps APIs 

were used in the development of the mobile application. The 

mobile application communicates with the cloud backend that 

is hosted by Amazon Web Services (AWS) via the use of 

cellular networks by using the AWS Mobile SDK for 

Android.x  

 

Disease Classifier –When photos are submitted via the 

mobile app, the Classifier, a stand-alone programme 

operating in the cloud, receives them and applies a trained 

deep Convolutional Neural Network (CNN) model to identify 

the kind of disease. The Deep CNN Trainer computes the 

CNN model, which is then utilised by the Classifier to 

categorise the submitted photos into the appropriate illness 

types. The Classifier also carries out post-processing, such as 

choosing whether the submitted photos should be delivered to 

an agricultural expert registered on the site or added to the 

Training Database based on the classification score. for more 

research. The photos and their associated metadata, such as 

the illness kind and location of the images, are uploaded to 

the Training Database when the classification score exceeds a 

predetermined threshold. If the system receives a low 
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classification score, it sends the case to agricultural expert 

teams for manual classification. The manual classifications 

are then provided to the farmer and kept in the training 

database. When a user submits a picture with an illness that 

the trained CNN model is not yet aware of, it often results in 

low accuracy.or the image is of poor quality. When the 

classification score is poor, expert assistance enables the 

insertion of new illness categories that may be saved for 

further training sessions. The Classifier can begin 

automatically diagnosing the new disease after the Training 

Database contains a significant number of photos 

representing the new disease category and a high 

classification accuracy is attained. We are able to increase the 

accuracy of automated response to covered illnesses over 

time as more farmers interact and provide photographs, while 

also expanding coverage for new diseases with the limited 

expert resources. 

x Deep CNN Trainer – 

This web-based application is responsible for taking care of 

the more laborious tasks involved in training the neural network 

and developing the deep CNN model. These are the tools that 

the classifier uses in order to place photographs into the relevant 

sickness categories. This programme begins running in the 

background asynchronously once the number of newly uploaded 

pictures to the Training Database reaches a certain threshold 

(without interfering with the Classifier). The deep CNN model 

that is used by the Classifier to categorise illnesses more 

correctly is continually improved by subsequent runs of this 

training programme, which use a larger training dataset. This 

allows for an ever-increasing level of precision in disease 

classification. AWS was used throughout the construction of the 

whole cloud platform. Python has been used to develop a 

number of useful applications, such as the Disease Classifier and 

the Deep CNN Trainer. These Python programmes have been 

altered in order to make them accessible through mobile 

internet. 

These were developed with the assistance of the FLASK web 

framework, and they were placed in front of an Apache Web 

Server that was running on a server that was hosted by Amazon 

EC2 (Ubuntu 16.04.2 LTS, 2 GiB memory, 8 GiB EBS volume). 

Both the Disease Classifier and the Deep CNN Trainer were 

constructed with the help of TensorFlow [4, an open source 

artificial intelligence framework created by Google]. 

x Training Database – 

This cloud-based database houses all of the images that were 

used in the process of training the deep CNN model. In addition 

to the images, the metadata, which includes information such as 

the kind of disease, the location of the picture, and time stamps, 

is recorded. This database becomes larger as the smartphone app 

is used more often and as more images taken in farmers' fields 

are submitted to the website. As a result of the expansion of the 

training database, the deep CNN model may undergo ongoing 

retraining using ever more extensive data sets. The data in this 

database is also used to compute disease density in relation to 

the user's location. The calculation is based on collective 

information such as the types of illnesses and the geolocations of 

picture files. and the mobile app presents the disease prevalence 

maps that were generated as a consequence. AWS S3 was used 

to build the photo database, while MySQL running on AWS 

EC2 was used to store the sickness information, which included 

category, treatment, and location. 

x Expert Interface  

 
 

Fig. 2. Expert dashboard with disease data visualizations 

Agricultural professionals now have access to a web-based 

expert interface that allows them to manually identify 

photographs that have received poor categorization scores. When 

an expert manually classifies a picture, an SMS notification is 

sent to the user, urging them to review the history of the mobile 

app for the most recent classification and any recommendations 

to make. Another feature of this interface is that it takes use of 

the disease data that is stored on the cloud platform. This gives 

professionals the ability to generate the time- and location-based 

sickness data visualisations shown in Figure 2 for the purposes of 

analytics and monitoring. Figure 3 depicts the flow of the 

process as well as the operations that are carried out by the 

platform's separate components and the interactions that occur 

between them. 

 Fig. 3. Process flow of the components 
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III. EXPERIMENTS, RESULTS AND OBSERVATIONS 

Numerous phases of testing were carried out in order to 

properly imitate lab-based and field-based situations for image 

analysis, which is the foundation of this idea. In general, there 

are three distinct types of experiments that may be distinguished: 

Experiment 1 used training images discovered through a Google 

search to test the viability of the proposal; Experiment 2 

demonstrated the proposal's high degree of accuracy even when 

used with a wide range of disease categories by using images 

taken under controlled conditions from a large open source 

public dataset; Experiments 3 and 4 were carried out using 

photographs that were self-collected, high fidelity, and high 

resolution, and were taken on an agricultural farm to replicate 

real life usage; Experiment 1 tested the viability of the proposal 

The seasonality of crops, their accessibility, the severity of 

diseases, and their prevalence at the time of the experiment all 

had a role in our choice to undertake active data gathering 

throughout the season. Our decision was impacted by all of these 

factors. 

A. Experiment 1 

In order to develop a Disease Classifier as a first level 

of exploration, we trained a deep CNN model using the most 

recent Inceptionv3 architecture [10] and Python's TensorFlow 

framework [4]. The objective of this experiment was to do 

picture identification of several mango illnesses as a baseline 

experiment to show that the method was feasible before moving 

on to a larger data set or to actual data gathered from fields. 

Using Google Search, several images of mangoes with illnesses 

were retrieved. Four prevalent mango illnesses [11] were chosen 

for this experiment because they each had different symptoms 

and visual representations.were more easily available. These 

diseases were Bacterial Canker, Mildew Mango, Phoma Blight 

and Red Rust (Fig. 4). 

 

 
Fig. 4. Symptoms of mango diseases (source: Google) 

The Inception-based CNN model was trained (transfer 

learned) using the downloaded photos in order to educate the 

network to distinguish the four different mango disease kinds. 

For training and classification, our model transforms input 

photos to 299X299 RGB. The information on picture 

categorization training and testing for Experiment 1 is shown in 

Table 1. 
Table 1. Experiment 1 Training And Classification Results 

 
 

In Experiments 1.1 through 1.3, a training data set for 

the CNN was created using 67 photos of bacterial canker, 70 

photographs of mildew, 22 images of phoma blight, and 37 

images of red rust. To determine if test accuracy varies with the 

training steps, several training step counts (250, 500, and 1000) 

were employed. The classification of test photos was done using 

the trained model. An array of four probability scores that add up 

to one is the result of categorization for each test picture. The 

likelihood that a test picture falls into one of the four categories 

is represented by each score. 
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With neural networks, overfitting is a potential issue 

where a model may simply be memorising unimportant aspects 

of the training photos to get the correct responses, giving strong 

results on the images it has seen during training but failing on 

new images. The process of training and testing were carried out 

and tabulated under Experiments 1.4 and 1.5 in Table 1, keeping 

the number of training steps constant at 500, in order to avoid 

the issue of overfitting. Some of the images from the training set 

were removed in order to prevent the model from memorising 

them. 

 

Table 1 shows that the classification accuracy is 

acceptable even with a relatively small number of poor quality 

training photos. Experiment 1.1, for instance, demonstrates that a 

test picture for bacterial canker was correctly categorised with a 

probability score of 0.749. Training is repeated by altering the 

number of training steps in 1.1, 1.2, and 1.3 while maintaining 

the same number of training pictures. Results demonstrate that 

the classification score increases as the number of training steps 

grows from 250 to 500 to 1000. (e.g. the scores of classification 

of the same bacterial canker image increases from 0.749 to 0.863 

to 0.927 with number of training steps 250, 500 and 1000 

respectively).Experiment 1.4 in Table 1 shows that even after the 

test photos were deleted from the training data, the trained model 

was still able to classify images it had never seen before with a 

decent amount of accuracy. Red rust image's classification was 

wrong (the model classified the red rust image as bacterial 

canker with a score of 0.379, marked in red). After replacing the 

test picture of red rust with a better image from the training set 

(with sharper spots), the experiment was redone (Experiment 

1.5), and the classification score increased, with the model 

correctly categorising the image as red rust with a score of 

0.827. This demonstrates how the quality of the test data 

improves categorization accuracy. 

 

However, trained CNN models may be used to identify 

photos relatively fast (1-3 seconds), making the usage of neural 

networks in smartphone apps conceivable. Training neural 

networks can be computationally and time-intensive (10–60 

minutes for our runs). Experiment 1's findings demonstrate that 

CNNs can be used for picture classification in our use case of 

diagnosing plant diseases, and they encourage additional 

research using more extensive and high-fidelity test data.  

Experiment 2 

 
Fig. 5. PlantVillage Sample Images [5] 

A sizable public dataset containing pictures of both 

healthy and ill plants that was gathered under controlled 

circumstances by agricultural professionals was utilised in the 

second stage of research. This was done to demonstrate how the 

treatment may be used to treat additional types of diseases on a 

wider scale. In order to facilitate the development of computer 

vision methods to assist address the issue of agricultural 

production loss owing to infectious illnesses, PlantVillage, an 

open-source platform [5] for crop health, has made a public 

collection of more than 50,000 plant photos available. This 

collection contains edited photos of both healthy and diseased 

plant leaves. 38 potential crop-disease pairings 

(classes/categories denoted as c0 to c37) are generated from 

photos of 26 illnesses in 14 crops. 

 

Eight categories of PlantVillage photos were 

randomly selected for training and assessment in our 

experiment. Five photos from each category were taken out of 

the training set to use as the test data. Our Inception-based 

CNN model was trained using the remaining training data from 

the 8 categories, and test pictures were then categorised using 

the learned model. The statistics for the training data set that 

was utilised to create the trained CNN model are displayed in 

Table 2. 

 
Table 2. Experiment 2 Training Dataset 

   
# Training Images for each category 

 

# Training 

Steps 
c3 c4 c5 c20 c21 c22    c24 c29 

1000 708 581 505 407 375 59 1912 400 

Table 3 captures the output of classification of the five test 

images for each category using the trained CNN model. 

Table 3. Experiment 2 classification results 

 Classification Probability Score 

Test 

image 
  c3 c4 c5 c20 c21 c22 c24 c29 

c3_test 0.766 0.108 0.024 0.014 0.033 0.011 0.034 0.009 

c3_test2 0.571 0.003 0.003 0.012 0.141 0.138 0.087 0.044 

c3_test3 0.813 0.012 0.021 0 0.005 0.002 0.012 0.133 

c3_test4 0.988 0.004 0.005 0 0 0 0.001 0.002 

c3_test5 0.366 0.082 0.024 0.013 0.076 0.079 0.316 0.043 

c4_test 0.016 0.967 0.004 0.001 0.003 0.005 0.001 0.001 

c4_test2 0.008 0.972 0.004 0.001 0.005 0.002 0.005 0.001 

c4_test3 0.028 0.688 0.17 0.011 0.011 0.02 0.069 0.002 

c4_test4 0.006 0.978 0.001 0 0.002 0.002 0.01 0 
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c4_test5 0.009 0.933 0.016 0 0.001 0.007 0.031 0 

c5_test 0.039 0.002 0.868 0.005 0.036 0 0.035 0.013 

c5_test2 0.129 0.006 0.827 0.002 0.011 0.001 0.011 0.01 

c5_test3 0.015 0.058 0.893 0 0.004 0.002 0.023 0.005 

c5_test4 0.001 0.01 0.965 0.008 0.013 0 0 0.002 

c5_test5 0.035 0.009 0.935 0.004 0.005 0.001 0.006 0.002 

c20_test 0.001 0.008 0.01 0.925 0.045 0.008 0.001 0.001 

c20_test2 0.005 0.001 0.049 0.881 0.051 0 0.005 0.007 

c20_test3 0 0 0.001 0.921 0.07 0.002 0.001 0.003 

c20_test4 0.001 0.001 0.004 0.976 0.009 0.001 0.002 0.005 

c20_test5 0 0 0 0.996 0.002 0 0 0.002 

c21_test 0.001 0.002 0 0 0.977 0.009 0.003 0.007 

c21_test2 0.004 0 0.006 0.005 0.03 0 0 0.954 

c21_test3 0.005 0.006 0.001 0.017 0.918 0.022 0 0.029 

c21_test4 0.001 0.001 0.003 0.062 0.908 0 0.004 0.02 

c21_test5 0.112 0.104 0.01 0.017 0.254 0.072 0.398 0.032 

c22_test 0.001 0.004 0 0.003 0.026 0.946 0.019 0.001 

c22_test2 0.027 0.032 0.001 0.005 0.019 0.842 0.068 0.006 

c22_test3 0.001 0.001 0 0 0.005 0.987 0.005 0.001 

c22_test4 0.032 0.035 0.011 0.004 0.284 0.589 0.027 0.017 

c22_test5 0.001 0.001 0 0.012 0.035 0.907 0.042 0.001 

c24_test 0.12 0.022 0.03 0.002 0.006 0.002 0.797 0.018 

c24_test2 0.006 0.003 0 0 0.006 0.039 0.941 0.001 

c24_test3 0.194 0.078 0.056 0.004 0.048 0.05 0.549 0.02 

c24_test4 0.006 0.003 0 0.004 0.014 0.11 0.859 0.001 

c24_test5 0.01 0.014 0.015 0 0.005 0.005 0.946 0.004 

c29_test 0.134 0.007 0.002 0.003 0.148 0.01 0.016 0.679 

c29_test2 0.005 0.001 0.003 0.037 0.014 0 0 0.939 

c29_test3 0.003 0.003 0.002 0.004 0.083 0.001 0.001 0.902 

c29_test4 0.007 0.001 0.043 0.015 0.3 0 0 0.633 

c29_test5 0.001 0.002 0.005 0.895 0.023 0.001 0.001 0.067 

 

Following significant observations can be drawn from 

this experiment with data collected under controlled conditions : 

x 37 out of 40 photos had the proper classification, meaning that 

92.5 percent of the images were correctly identified, 

demonstrating that the answer will hold true even for a sizable 

dataset with many different illness categories. The table has 3 

erroneous cases highlighted in red. 

X The inaccurate classifications may be the result of 

factors like the test image's poor quality, which prevents the 

classifier from accurately identifying it, and a few categories 

that have a lot of visual similarities (such c21 and c24). 

 
Fig. 6. c21_test2 that failed to classify correctly 

C. Experiment 3 

To confirm the end user experience, groundnut was 

selected as the primary case study for field research and 

experiment. The purpose of this experiment was to recreate real-

world situations using pictures that users had shot outside in the 

open air. Due to its widespread cultivation and use across the 

globe and its great economic value as a rich source of protein 

and edible oil, groundnut is also known as peanut. We decided to 

use groundnut as our case study since 80 percent of the world's 

groundnut crop is grown in underdeveloped nations, where 

yields are frequently quite low and illnesses have become a 

significant barrier to groundnut production globally [12The top 

three countries that produce groundnuts worldwide are China, 

India, and the US. Although there are several diseases that affect 

groundnut crops [12], two prominent ones—leaf spot, also 

known as "tikka," and bud necrosis—were chosen for this 

experiment because of their severity, significant production 

impacts, and widespread incidence in India. 

 

On the experimental fields of the Punjab Agricultural 

University in Ludhiana and the University of Agricultural 

Sciences, GKVK in Bangalore, hundreds of pictures of healthy 

and sick groundnut plants were gathered as part of the fieldwork. 

Three different varieties of groundnut plants—healthy plants, 

plants with leaf spot, and plants with bud necrosis—were chosen 

from the farms for data gathering and experiments. The three 

categories under experimentation—healthy, sick with leaf spots, 

and diseased with bud necrosis—were identified using the 

gathered photos as training data for the CNN model. The data for 

training the CNN model for groundnuts are shown in Table 4.A 

total of 811 photos were gathered for training, of which 243 

were of healthy plants, 358 were of plants with the illness known 

as "tikka," or leaf spot, and 210 were of plants with bud necrosis. 

The network's training procedure was completed in 14 minutes, 

yielding a trained CNN model. The classification of a set of test 

photos that weren't included in the training data was then done 

using the trained CNN model. 

 

 



                                                  International Journal of Engineering Innovations in Advanced Technology 
                                                                                                              ISSN: 2582-1431 (Online), Volume-4 Issue-2, June 2022 
 

70 

Table 4. Experiment 3 training dataset 

 
# Training Images for each category 

Training Steps Healthy 

Leaf Spot or Tikka 

Disease 
Peanut Bud Necrosis 

1000 243 358 210 

 

For the purpose of testing with the trained CNN model, a 

total of 15 test images of groundnut were classified using the 

model, out of which 5 were healthy, 5 had symptoms of leaf spot 

and 5 had symptoms of bud necrosis. Fig. 7, 8 and 9 show two 

images each of healthy, leaf spot and bud necrosis that were used 

in testing the CNN model. 

 

     
Fig. 7. Test images of healthy groundnut 

 
Fig.8. Test images of Leaf Spot groundnut 

 
Fig. 9. Test images of Bud Necrosis groundnut 

Table 5 shows the results of classification of the 15 field test 

images with the trained CNN model. To classify each image 

with the trained CNN model, it took approximately 1.4 seconds. 

 

TABLE 5. EXPERIMENT 3 CLASSIFICATION RESULTS 

 
Classification Probability Score 

Test image Healthy Leaf Spot or Tikka Peanut Bud Necrosis 

healthy_test1 0.974 0 0.025 

healthy_test2 0.963 0.007 0.028 

healthy_test3 0.975 0.012 0.012 

healthy_test4 0.828 0.028 0.143 

healthy_test5 0.799 0.031 0.168 

leaf_spot_test1 0 0.988 0.01 

leaf_spot_test2 0.001 0.99 0.007 

leaf_spot_test3 0 0.983 0.016 

leaf_spot_test4 0.003 0.995 0 

leaf_spot_test5 0.001 0.995 0.003 

bud_necrosis_test1 0 0.192 0.98 

bud_necrosis_test2 0.046 0.027 0.925 

bud_necrosis_test3 0.071 0.078 0.85 

bud_necrosis_test4 0 0.053 0.945 

bud_necrosis_test5 0.22 0.353 0.74436 

Following observations can be made from the results of our 

main case study of Experiment 3 captured in Table 5: 

x It was demonstrated that the accuracy would be high with 

accurately categorised high fidelity training data set by 

the fact that correct classification was accomplished in 

100% of test situations with high accuracy across all 3 

categories (healthy, leaf spot, and bud necrosis). 

x The findings of Experiment 3 were superior to those of 

Experiment 1 (downloaded Google photos) and 

Experiment 2 (open source data set from controlled 

settings), despite the fact that Experiment 2 included 

more training images. This would suggest that using 

photos captured in their natural environment helps with 

training and categorization. x The leaf spot or "tikka" 

illness had the best classification accuracy among the 

categories in Experiment 3. Experiment 3's Leaf Spot 

category had the most training photographs, 

demonstrating that, provided all other variables are held 

constant, a larger number of verified training images 

will result in a higher accuracy. With a relatively 

smaller collection of training data, x Experiment 3 

generated a high level of accuracy. This leads us to infer 

that even with large-scale production deployment, the 

rate of error or ambiguity in illnesses categorization can 
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be kept low because bigger-scale deployment also 

entails larger training datasets with user-added photos. 

x The categorization of a test picture using the trained CNN 

model is extremely quick (on average 1.4 seconds), 

despite the 14 minute training process. This 

demonstrates how the effectiveness of the underlying 

deep CNN enables the challenging work of picture 

categorization to be accomplished via a user-facing 

mobile app. The training process is separate and 

operates in the Cloud without interfering with the 

runtime of a picture. classification. The user application 

for mobile devices has a straightforward frontend 

interface, while the complex training and classification 

tasks are handled by the robust AI algorithms operating 

in the cloud and providing real-time classification 

results to the user application. 

D. Experiment 4 

Our intention was to extend the model's coverage to 

additional local crop varieties. Experiment 3 was expanded to 

include training and testing with actual photographs of tomato 

and grape illnesses. The grape experiment was designed to show 

that illness categorization is accurate even for disease symptoms 

that appear relatively early. For CNN training, several picture 

examples of healthy grapes and grapes showing early signs of 

downy mildew were gathered from agricultural fields. Sample 

photos of healthy grape leaves and early downy mildew are 

shown in Fig. 10. 

 
Fig. 10. Healthy and downy mildew grape leaves 

The goal of the tomato experiment was to demonstrate 

capability of the CNN model to differentiate between diseases of 

similar nature. Many image samples with symptoms of fungal 

diseases early blight and late blight of tomato were collected for 

the training of CNN model as shown in Fig. 11. 

 
Fig. 11. Healthy and Blight of tomato 

In tests using never-before-seen photos of healthy and 

sick grapes and tomatoes, 100% success was attained in 

correctly classifying the illnesses, demonstrating that the 

algorithm is capable of recognising even the earliest signs 

and differentiating across diseases in the same family. 

 

IV. FUTURE WORK AND EXTENSIONS 

Expanding the model to include other factors that might 

strengthen the illness association is a task for future study. We 

may add supporting data from the farmer on the soil, past 

fertiliser and pesticide treatment, as well as publicly available 

climatic elements like temperature, humidity, and rainfall to the 

picture database to improve the model's accuracy and allow 

disease forecasting. In addition to lowering the overall need for 

professional assistance and raising the incidence of agricultural 

diseasesOur objectives span unique disease types. A 

straightforward method of calculating the threshold based on the 

average of all classification scores may be used to automatically 

admit user-uploaded photos into the Training Database for 

greater classification accuracy and little human interaction. 

This research may also be utilised to assist time-based 

automated monitoring of illness density maps, which may be 

used to follow a disease's progression and sound alerts. Users 

may receive notifications using predictive analytics about 

potential illness outbreaks in their area. 

 

V CONCLUSION 

The accurate, prompt, and early diagnosis of crop 

diseases as well as knowledge of disease outbreaks, which would 

be helpful in making decisions regarding the actions to be taken 

for disease control, are two of the greatest challenges that 

farmers face in the agricultural industry. Knowing how to 

effectively combat diseases also presents a significant obstacle. 

In this study, we provide a fully automated, low-cost, and 

straightforward end-to-end solution to the challenges described 

above. This proposal improves upon the known prior art by 

making use of deep Convolutional Neural Networks (CNNs) for 

disease classification, introducing a social collaborative platform 

for steadily increasing accuracy, making use of geocoded images 

for disease density maps, and making use of an expert interface 

for analytics. The high-performing deep CNN model "Inception" 

enables real-time sickness classification in the Cloud platform, 

and it does so via a mobile app that the end user interacts with. 

 

The collaborative model makes it possible for the 

accuracy of sickness classification to be continuously improved. 

This is accomplished by automatically increasing the cloud-

based training dataset with user-added photographs for the 

purpose of retraining the CNN model. User-added images in the 

Cloud repository allow for the generation of disease density 

maps, which are based on the collective sickness classification 

data as well as the availability of geolocation information within 

the photos themselves. In general, the findings of our 

experiments indicate that the proposal has significant potential 
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for practical application. This is the case for a number of reasons, 

including the following: the infrastructure that is based in the 

cloud is highly scalable; the underlying algorithm works 

accurately even with a large number of disease categories; it 

performs better with high-fidelity real-life training data; it 

improves accuracy with increase in the training dataset; it is able 

to detect early symptoms of diseases. 
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