
 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

39

Improvement Of Memory Data Corrections

By Using CRC Technique For Fault

Torrent Applications
Kethan Tingilkar

MTech Student, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: kethan1510@gmail.com

Dr.S. Kishore Reddy

Associate professor, HOD, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: kishorereddy416@gmail.com

B Dasharadha

Assistant professor, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: banothudasharadha@gmail.com

Abstract- A Bose-Chaudhuri-Hocquenghem (BCH) code

decoder with high decoding efficiency and low power

for error correction in developing memories is provided

in this research as DEC-TED, or double-error-

correcting and triple error-detecting. We suggest an

adaptive error correction method for the DEC-TED

BCH code to improve decoding efficiency. This method

counts the number of mistakes in a codeword right after

syndrome creation and uses a different error correction

algorithm based on the error conditions the syndrome

vectors in the error-finding block in order to further

reduce the power consumption. The suggested decoders

for the (79, 64, 6) BCH code achieve more than 70%

power reduction compared to the standard fully parallel

decoder under the 104-102 raw bit-error rate, according

to synthesis findings with an industry-compatible 65-nm

technology library.

Index Terms- DEC-TED, BCH code, synthesis,

decoding

I. INTRODUCTION

Digital networks and storage devices typically utilize

error-detection codes known as cyclic redundancy

checks (CRCs). Short check values are applied to

data blocks entering these systems, depending on the

Manuscript received Oct 10, 2022; Revised Oct 25, 2022;
Accepted Nov 4, 2022

remainder of polynomial division of the contents. It is

possible to take remedial action against data

corruption if the check values do not match after

retrieval. A cyclic code is used to generate the check

(data verification) value, which gives CRCs their

name since it doubles the message's size without

adding any new information. Popularity of CRCs is

due to the fact that they are simple to build in binary

hardware and straightforward to evaluate

mathematically, and they are especially excellent at

identifying typical mistakes caused by transmission

channel noise. Using a function to create the check

value is common since it has a defined length. When

W. Wesley Peterson first came up with the CRC in

1961, the 32-bit CRC function of Ethernet and many

other standards was developed and released in 1975

by a group of researchers from across the world.

II. CRC AND ITS WORKING

the theory of cyclic error-correcting codes underpins

CRCs. In 1961, W. Wesley Peterson suggested the

use of systematic cyclic codes, which encrypt

messages by adding a fixed-length check value, for

error detection in communication networks.[1]

Although cyclic codes are easy to design, they are

especially well-suited for detecting burst mistakes,

https://www.openaccess.nl/en/open-publications
mailto:kishorereddy416@gmail.com
mailto:banothudasharadha@gmail.com

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

40

which are continuous sequences of incorrect data

symbols in messages. Cyclic codes offer both of

these advantages. These mistakes are widespread in

many communication channels, such as magnetic and

optical storage systems, thus it's critical to prevent

them. A single error burst of length n bits or less will

be detected by an n-bit CRC applied to a data block

of any length, and a percentage of all larger error

bursts will be detected by an n-bit CRC.

The so-called generator polynomial must be

defined in order to provide a CRC code. If we divide

the message by this polynomial, we get the quotient,

which is then multiplied by this polynomial to get the

remainder. To be clear, because a finite field is used

to generate the polynomial coefficients, the addition

may always be done bitwise-parallel (there is no

carry between digits). The generator polynomial's

length is never more than the length of the remainder.

GF is a Galois field with two elements, and it is

utilised in almost all standard CRCs nowadays (2). 0

and 1 are often referred to as the two elements, which

is a good fit for computer architecture.

An n-bit CRC is one that has a check value

of n bits. It is feasible to have many CRCs with

different polynomials for the same n. The greatest

degree n of this polynomial is 1, indicating that it has

n + 1 terms. That is to say, the polynomial has a

length of n + 1 and needs n + 1 bits for encoding.

Because the MSB and MSB are always one, most

polynomial specifications either omit the MSB or

MSB. As shown in the table below, the CRC and its

related polynomial often have a name of the form

CRC-n-XXX Using the generator polynomial x + 1

(two terms) and the label CRC-1, the parity bit is in

reality a straightforward 1-bit CRC.

Figure 1 Operation of CRC performed at

sender and receiver Side.

Using cyclic redundancy check is a standard way for

dealing with data mistakes in data transmission and

other domains such as data storage, data

compression. A common approach to real-time CRC

calculation is to use the serial data-handling devices

known as linear feedback shift registers (LFSRs).

Serial CRC code computation, on the other hand, has

a low throughput. Using concurrent CRC

calculations, on the other hand, may considerably

boost the computational throughput. However, the

32-bit parallel computation of CRC-32 may

accomplish many gigabits per second, but this is not

adequate for high-speed applications like Ethernet

networks, for example. For example, CRC-CCITT in

the X-25 protocol, disc storage, SDLC, and

XMODEM all employ CRC-CCITT variants to

identify errors in their data transmissions; this might

be an alternative solution to the problem at hand. The

theory of cyclic error-correcting codes underpins

CRCs. To help identify errors in communication

networks, W. Wesley Peterson originally advocated

the use of systematic cyclic codes, which encrypt

messages by adding a fixed-length check value.

Binary polynomial division is used to generate a CRC

(Cyclic Redundancy Check), a widely used error-

detection code. The sender treats binary data as a

binary polynomial and divides the polynomial by a

standard generator to obtain a CRC (e.g., CRC-32).

The remainder of this division is used as the data's

CRC, which is then sent together with the original

data to the recipient. The receiver executes modulo-2

division on the received data and the same generating

polynomial after receiving the data and the CRC

checksum. Even if the original data is long, the CRC

method only adds 32 bits (in the case of CRC-32) to

the message, and it performs well in detecting a

single mistake as well as a burst of errors.

A. Design of polynomials

The generator polynomial is the most critical aspect

of the CRC method implementation. Polynomials

must be selected to optimise error detection while

reducing total collision probability.

Polynomial length is critical because it directly

affects the length of the calculated check value (i.e.,

the greatest degree (exponent) +1 of any one term in

a polynomial).

• 9 bits (CRC-8); • 17 bits (CRC-16); • 33 bits (CRC-

32); • 65 bits are the most widely utilised polynomial

lengths (CRC-64)

When the check value of a CRC is n-bits, it is known

as an n-bit CRC. It is feasible to have many CRCs

with different polynomials for the same n. If the

polynomial has the greatest number of terms (n+1),

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

41

then it has the greatest number of terms (n+1). n is

the length of the remainder. To remember its value,

the CRC uses a number formatted as CRC-n-XXX.

As a result of these factors, the CRC polynomial's

design is determined by its maximum total length, the

intended error prevention features, the kind of

resources needed to implement it, and its

performance requirements. Irreducible polynomials

and irreducible polynomials are two frequent

misconceptions about CRC polynomials.

All faults affecting an odd number of bits may be

detected by multiplying the polynomial by the

quantity 1 + x. A polynomial that incorporates all of

the aforementioned criteria is more likely to be a

reducible polynomial. However, the quotient ring has

zero divisors, therefore picking a reducible

polynomial will result in a certain percentage of

missed mistakes.

Using a primitive polynomial to generate a CRC code

has the advantage of providing the maximum

possible total block length because all 1-bit errors

within that block length have different remainders

(also referred to as syndromes), and because the

remainder is a linear function of the block, the code

can detect all 2-bit errors within that block length. A

primitive generator polynomial of degree r may have

a maximum block length of 2r-1, and the

corresponding code can identify any single-bit or

double-bit faults. [6] This condition can be improved.

Code that can detect single, double, triple, or odd

number of mistakes may be generated by using the

generator polynomial (x)=p(x)(1+x) g(x)=p(x)(1+x).

The maximum total block length is 2r-1-1s.

A polynomial that can be factored into additional

polynomials may then be selected to balance the

maximum overall block length with a desired error

detection power. A class of polynomials known as

BCH codes is a powerful one. These two samples are

merged into one. A generator polynomial that

contains the "+1" term will be able to identify error

patterns restricted to a window of r contiguous bits,

regardless of the reducibility features of the

polynomial. "Error bursts" are the term for these

patterns.

Specifications

When a share of services or standards committee

utilises the CRC to construct a realistic system, the

idea of the CRC as an error-detection code becomes

more sophisticated. The following are a few of the

difficulties:

A predetermined bit pattern may be prefixed to the

bit stream to be examined in certain implementations.

For example, if a clock fault inserts zero-bits in front

of a message, the check value will remain unaltered.

Before performing polynomial division, an

implementation would typically add n 0-bits (n being

the size of the CRC) to a bit stream. In the

Computation of CRC article, such appending is

clearly proved. Since the check value is added to the

original bit stream, the rest of the bit stream may be

divided by the polynomial division function and the

result compared to zero to determine if the CRC has

been correctly generated. It is possible to achieve a

result equivalent to zero appending without explicitly

adding zeroes, because of the associative and

commutative properties of the exclusive-or operation

in practical table driven implementations, by using an

equivalent, faster algorithm that combines the

message and CRC data streams.

The residue of the polynomial division is sometimes

exclusive-ORed using a predetermined bit pattern.

Order of bits: "Low order" refers to the first low-

order bit of each byte, however other systems see this

as the "first" bit, which denotes "leftmost" in

polynomial division. Because many serial-port

transmission conventions send the least significant bit

(LSB) first, this convention makes sense when CRC-

checked in hardware. Byte order: With multi-byte

CRCs, it can be confusing whether the byte

transmitted first (or stored in the smallest byte of

memory) is the least major byte (LSB) or the most

significant byte (MSB). In certain 16-bit CRC

systems, for example, the check value is swapped.

The divisor polynomial's high-order bit was omitted.

If an n-bit CRC must be defined by a (n + 1)-bit

divisor, some publications think that it is unnecessary

to provide the divisor's high-order bit because the

high-order bit always equals 1.

The divisor polynomial's low-order bit was omitted:

In order to express polynomials with their high-order

bits intact, writers such as Philip Koop may do so

without the low-order bit (the x0 or 1 term). The

degree of a polynomial is encoded in one number in

this convention.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

42

There are three typical methods to represent a

polynomial as an integer due to these complications:

the first two are mirror copies of binary constants

seen in code, and the third is the integer found in

Koopmans' publications. One phrase is missing in

each example. There are a number of ways to express

this polynomial, and the following is one example:

(MSB-first code)

• 0xC is equal to 0b1100, which represents (LSB-first

code)

• 0x9 is 0b1001, (1x4+0x3+0x2+1x1)+x0, which is

the hexadecimal representation of 0x9 (Koop man

notation)

B. FAST CRC

From the parallel CRC computation, we developed a

technique that can handle any amount of bits being

processed in parallel. The CRC calculation unit's

power consumption and data traffic may be reduced

by using this approach, as well as the correction

process itself.

It is known as "channel coding" or "forward error

correction" in the field of telecommunications and

computer science for its usage in reducing

transmission mistakes while using unstable or noisy

channels of communication. The key principle is that

the sender uses an error-correcting code to encode the

information in a redundant manner (ECC). It all

began in the 1940s, when American mathematician

Richard Hamming set out to discover the first error-

correcting code.

In the event of a mistake occurring anywhere else in

the message, the receiver may catch it and fix it

without having to retransmit. FEC eliminates the

requirement for a reverse channel to seek

retransmission of data by allowing the receiver to

repair mistakes, albeit at the expense of a fixed,

greater forward channel capacity. Retransmissions

are prohibitively expensive or impossible in FEC

scenarios, such as one-way communications systems

and multicast broadcasts to a large number of

recipients. Mass storage devices sometimes include

FEC information to help restore damaged data, and

modems utilise it extensively.

When a channel's noise level is high enough, the

noisy-channel coding theorem limits the channel's

theoretical maximum information transmission rate.

The theoretical maximum performance of several

modern FEC systems is extremely close to being

reached.

Various forward error correcting codes are acceptable

for different scenarios based on the maximum

percentages of mistakes or missing bits that can be

rectified by the FEC code design.

Using an algorithm, FEC makes data transmissions

more secure by providing more redundancy. It is

possible that a redundant bit is a multi-bit function of

several original bits of information in the original

data. Some codes contain the original data in their

output exactly, while others do not; codes that

include the original data are called systematic, while

those that do not are called non-systemic.

Due to the fact that each data bit impacts several sent

symbols, the noise corruption of certain symbols

generally permits the original user data to be

retrieved from the other, uncorrupted received

symbols that also rely on the same user data. FEC

works by "averaging noise"

In the case of NAND flash memory, Hamming ECC

is a popular remedy. Single-bit error correction and

two-bit error detection are provided by this method.

Only SLC NAND can benefit from hamming codes

because of their higher degree of reliability.

C. simulation

The design was simulated utilizing ModelSim and

Xilinx ISE 145i was used to calculate the area delay,

which is necessary for the design, in VHDL. As a

result, the updated ETI design with XOR gate takes

up more circuit space and causes a delay in

implementation.

The purpose of a simulation is to ensure that your

design works as expected. After you've completed

your design and code, this is the first stage.

ModelSim and other simulators like it are used to test

your idea. Functional simulation is another name for

this process. To put it another way, simulation is

nothing more than a technique to test hardware for

predicted logical capability without taking into

account real timing concerns, such as network and

circuit delays.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

43

A. synthesis

A VHDL register-transfer level model of a circuit is

used to create a net list at the gate level, which is

known as synthesis. At the net list generation stage,

there is a process known as synthesis, when register

transfer level blocks such as arithmetic logic units

and multiplexers are joined through wires to create a

net list. Implementing a design into physical

hardware is what we mean by synthesis.

If your functional design has been confirmed, rather

than only intellectually, then Synthesis is what you're

looking for. After we've confirmed your design, we'll

move on to hardware implementation. Because of

this, you must change the design from RTL to gate

level design.

In order to synthesise, there are three steps:

• Translating and optimising content, as well

as mapping technology.

• RTL translation to net-lists at the gate level.

• The third degree of optimization is non-

optimization-technological logic.

A reduction in the number of components

necessary to provide the desired functionality is

achieved via optimization. In addition to it, there's a

"timing simulation."

III. EXPERIMENTAL RESULTS

A. Simulation Results for 32 bit CRC:

Figure 1simulation results of 32 bit crc

Figure 2 RTL schematic diagram for CRC

Figure 3 internal schematic diagram for CRC

IV. FUTURE WORK

To eliminate data mistakes in high-speed DSP

communications, CRC will be used primarily in the

future, as well as in all network streams to prevent

data mistakes from transmitter to the receiver in all

network-related devices.

V. CONCLUSION

Because of its poor throughput, serial

implementation is seldom used for high-speed data

transfer. Parallel implementation is preferable since it

is faster. To send 64 bytes of data using CRC-32,

you'll need 17 clock cycles. When compared to CRC-

64, this data is sent in 9 clock cycles. In other words,

it dramatically cuts down on processing time by half

while also boosting throughput.

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

44

REFERENCES

[1] Walma, M., "Pipelined Cyclic Redundancy

Check (CRC) Calculation," Computer

Communications and Networks, 2007. ICCCN

2007. Proceedings of 16th International

Conference on , pp.365,370, 13-16 Aug. 2007

[2] Akagic, A.; Amano, H., "Performance evaluation

of multiple lookup tables algorithms for

generating CRC on an FPGA," Access Spaces

(ISAS), 2011 1st International Symposium on ,

pp.164,169, 17-19 June 2011

[3] Shukla, S.; Bergmann, N.W., "Single bit error

correction implementation in CRC-16 on FPGA,"

Field-Programmable Technology, 2004.

Proceedings. 2004 IEEE International Conference

on , pp.319,322, 6-8 Dec. 2004

[4] Toal, C.; McLaughlin, K.; Sezer, S.; Xin Yang,

"Design and Implementation of a Field

Programmable CRC Circuit Architecture," Very

Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.17, no.8, pp.1142,1147,

Aug. 2009

[5] Grymel, M.; Furber, S.B., "A Novel

Programmable Parallel CRC Circuit," Very Large

Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.19, no.10, pp.1898,1902,

Oct. 2011

[6] Akagic, A.; Amano, H., "Performance analysis of

fully-adaptable CRC accelerators on an FPGA,"

Field Programmable Logic and Applications

(FPL), 2012 22nd International Conference on ,

pp.575,578, 29-31 Aug. 2012

[7] Ramabadran, T.V.; Gaitonde, S.S., "A tutorial on

CRC computations," Micro, IEEE , vol.8, no.4,

pp.62,75, Aug. 1988

[8] Campobello, G.; Patane, G.; Russo, M., "Parallel

CRC realization," Computers, IEEE Transactions

on , vol.52, no.10, pp.1312,1319, Oct. 2003

[9] Albertengo, G.; Sisto, R., "Parallel CRC

generation," Micro, IEEE , vol.10, no.5, pp.63,71,

Oct. 1990

[10] Yan Sun; Min Sik Kim, "A Table-Based

Algorithm for Pipelined CRC Calculation,"

Communications (ICC), 2010 IEEE International

Conference on , pp.1,5, 23-27 May 2010

[11] http://www.xilinx.com/support/documentation/us

er_guides/ug384.pdf (last visited on 18.08.2013)

[12] http://www.xilinx.com/support/documentation/sw

_manuals/xilinx11/spartan6_hdl.pdf (last visited

on 18.08.2013)

[13] Joglekar, A.; Kounavis, M.E.; Berry. F.L., “A

Scalable and High Performance Software iSCSI

Implementation,” File and Storage Technologies

(FAST’05) , Proceedings of 4th USENIX

Conference on , Vol.4. USENIX Dec, 2005

https://www.openaccess.nl/en/open-publications

