
                   International Journal of Engineering Innovations in Advanced Technology 
                                                                                 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022 
 

60 

 

Design Of High Order Compression 

Multiplier For High-Speed DSP 

Applications 

 
B Bhavani 

MTech Student, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India. 

Email: Bhaskarabhavani20@gmail.com 

Dr.S. Kishore Reddy 

Associate professor, HOD, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India. 

Email: kishorereddy416@gmail.com 
 

Mr. E Nagesh 

Assistant professor, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India. 

Email: nagesherugu@gmail.com 

 
 

Abstract- Redundant Binary Partial Product 

Generator technique are used to reduce by one row the 

maximum height of the partial product array 

generated by a radix16 Modified Booth Encoded 

multiplier, without any raise in the delay of the partial 

product creation Block. In this paper, we describe an 

optimization for binary radix-16 (modified) Booth 

recoded multipliers to reduce the maximum height of 

the partial product columns to [n/4] for n = 64-bit 

unsigned operands. This is in contrast to the 

conventional maximum height of [(n + 1)/4]. Therefore, 

a reduction of one unit in the maximum height is 

achieved. These Arithmetic multipliers increase the 

performance of ALU and Processors. We evaluate the 

proposed approach by comparison with Normal Booth 

Multiplier. Logic synthesis showed its efficiency in 

terms of delay and power consumption when the word 

length of each operand in the multiplier is 64bits. 

Key words - multiplier, binary radix-16, reduction, 

Booth Multiplier 

I. INTRODUCTION 

 

 BINARY multipliers are a widely used 

building block element in the design of 

microprocessors and embedded systems, and 

therefore, they are an important target for 

implementation optimization. 
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A. radix-16 partial products generation 

  

 However, the advantage of the high radix is 

that the number of partial products is further 

reduced. For instance, for radix-16 and n-bit 

operands, about n/4 partial products are generated. 

Although less popular than radix-4, there exist 

industrial instances of radix-8. and radix-16 

multiplier in microprocessors implementations. The 

choice of these radices is related to area/delay/power 

optimization of pipelined multipliers (or fused 

multiplier adder as in the case of a Intel Itanium 

microprocessor), for balancing delay between stages 

and/or reduce the number of pipelining flip-flops.  

 A further consideration is that carry-

propagate adders are today highly energy-delay 

optimized, while partial product reductions trees 

suffer the increasingly serious problems related to a 

complex wiring and glitching due to unbalanced 

signal paths. It is recognized in the literature that a 

radix-8 recoding leads to lower power multipliers 

compared to radix-4 recoding at the cost of higher 

latency (as a combinational block, without 

considering pipelining). Moreover, although the 

radix-16 multiplier requires the generation of more 

odd multiples and has a more complex wiring for the 

generation of partial products, a recent 

microprocessor design considered it to be the best 
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choice for low power (under the specific constraints 

for this microprocessor).  

 In some optimizations for radix-4 two’s 

complement multipliers were introduced. Although 

for n-bit operands, a total of n/2 partial products are 

generated, the resulting maximum height of the 

partial product array is n/2 + 1 elements to be added 

(in just one of the columns). This extra height by a 

single-bit row is due to the +1 introduced in the bit 

array to make the two’s complement of the most 

significant partial product (when the recoded most 

significant digit of the multiplier is negative). The 

maximum column height may determine the delay 

and complexity of the reduction tree, authors 

showed that this extra column of one bit could be 

assimilated (with just a simplified three-bit addition) 

with the most significant part of the first partial 

product without increasing the critical path of the 

recoding and partial product generation stage. The 

result is that the partial product array has a maximum 

height of n/2. This reduction of one bit in the 

maximum height might be of interest for high-

performance short-bit width two’s complement 

multipliers (small n) with tight cycle time 

constraints, that are very common in SIMD digital 

signal processing applications. Moreover, if n is a 

power of two, the optimization allows to use only 4-

2 carry-save adders for the reduction tree, potentially 

leading to regular layouts. These kind of 

optimizations can become particularly important as 

they may add flexibility to the “optimal” design of 

the pipelined multiplier.  

II.  EXISTING METHODS-MULTIPLERS 

A. Multipliers 

  Multipliers play an important role in 

today’s digital signal processing and various other 

applications. With advances in technology, many 

researchers have tried and are trying to design 

multipliers which offer either of the following 

design targets  

• High speed, 

• Low power consumption, 

• Regularity of layout and hence less area or 

even combination of them in one multiplier 

thus making them suitable for various high 

speed, 

• Low power and compact VLSI 

implementation. 

 The common multiplication method is “add 

and shift” algorithm. In parallel multipliers number 

of partial products to be added is the main parameter 

that determines the performance of the multiplier. 

To reduce the number of partial products to be 

added, with increasing parallelism, the amount of 

shifts between the partial products and intermediate 

sums to be added will increase which may result in 

reduced speed, increase in silicon area due to 

irregularity of structure and also increased power 

consumption due to increase in interconnect 

resulting from complex routing. On the other hand 

“serial-parallel” multipliers compromise speed to 

achieve better performance for area and power 

consumption. The selection of a parallel or serial 

multiplier actually depends on the nature of 

application. In this lecture we introduce the 

multiplication algorithms and architecture and 

compare them in terms of speed, area, power and 

combination of these metrics. AND gates are used to 

generate the Partial Products (PP). If the 

multiplicand is N-bits and the Multiplier is M-bits 

then there is N* M partial product.  

B. History Of Multipliers 

 The early computer systems had what are 

known as Multiply and Accumulate units to perform 

multiplication between two binary unsigned 

numbers. The Multiply and Accumulate unit was the 

simplest implementation of a multiplier. The basic 

block diagram of such a system is given below. 

 

 
Figure 1: Multiplier Block Diagram 

C. Implementation 

  The MAC unit requires a 4-bit 

multiplicand register, 4-bit multiplier register, a 4-
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bit full adder and an 8-bit accumulator to hold the 

product. In the figure above the product register 

holds the 8-bit result. In a typical binary 

multiplication, based on the multiplier bit being 

processed, either zero or the multiplicand is shifted 

and then added. 

 

III. PROPOSED MULTIPLIER 

 

A. Basic Radix-16 Booth Multiplier 

 

 In this section, we describe briefly the architecture 

of the basic radix-16 Booth multiplier. For sake of 

simplicity, but without loss of generality, we 

consider unsigned operands with n = 64. Let us 

denote with X the multiplicand operand with bit 

components xi (i = 0 to n − 1, with the least-

significant bit, LSB, at position 0) and with Y the 

multiplier operand and bit components yi. The first 

step is the recoding of the multiplier operand [8]: 

groups of four bits with relative values in the set {0, 

1,..., 14, 15} are recoded to digits in the set {−8, 

−7,..., 0,..., 7, 8} (minimally redundant radix-16 digit 

set to reduce the number of multiples). This recoding 

is done with the help of a transfer digit ti and an 

interim digit wi [7]. The recoded digit zi is the sum 

of the interim and transfer digits  

zi = wi + ti. 

When the value of the four bits, vi, is less than 8, the 

transfer digit is zero and the interim digit wi = vi. 

For values of vi greater than or equal to 8, vi is 

transformed into vi = 16 − (16 − vi), so that a transfer 

digit is generated to the next radix-16 digit position 

(ti+1) and an interim digit of value wi = −(16 − v) is 

left. That is  

0 ≤ vi < 8 : ti+1 = 0 wi = vi wi ∈ [0, 7] 

8 ≤ vi ≤ 15 : ti+1 = 1 wi = −(16 − vi) wi ∈ [−8, −1]. 

The transfer digit corresponds to the most-

significant bit (MSB) of the four-bit group, since this 

bit determines if the radix-16 digit is greater than or 

equal to 8. The final logical step is to add the interim 

digits and the transfer digits (0 or 1) from the radix-

16 digit position to the right. Since the transfer digit 

is either 1 or 0, the addition of the interim digit and 

the transfer digit results in a final digit in the set {−8, 

−7,..., 0,..., 7, 8}. 

 Due to a possible transfer digit from the 

most significant radix-16 digit, the number of 

resultant radix-16 recoded digits is (n + 1)/4. 

Therefore, for n = 64 the number of recoded digits 

(and the number of partial products) is 17. Note that 

the most significant digit is 0 or 1 because it is in fact 

just a transfer digit. After recoding, the partial 

products are generated by digit multiplication of the 

recoded digits times the multiplicand X. 

 

 

Figure 2: Partial product generation 

 

For the set of digits {−8, −7,..., 0,..., 7, 8}, 

the multiples 1X, 2X, 4X, and 8X are easy to 

compute, since they are obtained by simple logic 

shifts. The negative versions of these multiples are 

obtained by bit inversion and addition of a 1 in the 

corresponding position in the bit array of the partial 

products. The generation of 3X, 5X, and 7X (odd 

multiples) requires carry-propagate adders (the 

negative versions of these multiples are obtained as 

before). Finally, 6X is obtained by a simple one bit 

left shift of 3X. Fig. 2.12 illustrates a possible 

implementation of the partial product generation. 

Five bits of the multiplier Y are used to obtain the 

recoded digit (four bits of one digit and one bit of the 

previous digit to determine the transfer digit to be 

added). The resultant digit is obtained as a one-hot 

code to directly drive a 8 to 1 multiplexer with an 

implicit zero output (output equal to zero when all 

the control signals of the multiplexer are zero).  

The recoding requires the implementation 

of simple logic equations that are not in the critical 

path due to the generation in parallel of the odd 

multiples (carry-propagate addition).  The XOR at 

the output of the multiplexer is for bit 

complementation (part of the computation of the 

two’s complement when the multiplier digit is 
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negative). Fig. illustrates part of the resultant bit 

array for n = 64 after the simplification of the sign 

extension [7].  

In general, each partial product has n + 4 

bits including the sign in two’s complement 

representation. The extra four bits are required to 

host a digit multiplication by up to 8 and a sign bit 

due to the possible multiplication by negative 

multiplier digits. Since the partial products are left-

shifted four bit positions with respect to each other, 

a costly sign extension would be necessary. 

However, the sign extension is simplified by 

concatenation of some bits to each partial product (S 

is the sign bit of the partial product and C is S 

complemented): CSSS for the first partial product 

and 111C for the rest of partial products (except the 

partial product at the bottom that is non negative 

since the corresponding multiplier digit is 0 or 1). 

The bits denoted by b in Fig. corresponds to the logic 

1 that is added for the two’s complement for 

negative partial products. 

After the generation of the partial product 

bit array, the reduction (multioperand addition) from 

a maximum height of 17 (for n = 64) to 2 is 

performed. The methods for multioperand addition 

are well known, with a common solution consisting 

of using 3 to 2 bit reduction with full adders (or 3:2 

carry-save adders) or 4 to 2 bit reduction with 4:2 

carry-save adders. The delay and design effort of 

this stage are highly dependent on the maximum 

height of the bit array. It is recognized that reduction 

arrays of 4:2 carry-save adders may lead to more 

regular layouts [16]. For instance, with a maximum 

height of 16, a total of 3 levels of 4:2 carry-save 

adders would be necessary. A maximum height of 

17 leads to different approaches that may increase 

the delay and/or require to use arrays of 3:2 carry-

save adders interconnected to minimize delay [20]. 

After the reduction to two operands, a carry-

propagate addition is performed. This addition may 

take advantage of the specific signal arrival times 

from the partial product reduction step. 

 

B. Partial product generation stage including 

our proposed scheme 

 

                To reduce the maximum height of the 

partial product bit array we perform a short carry-

propagate addition in parallel to the regular partial 

product generation. This short addition reduces the 

maximum height by one row and it is faster than the 

regular partial product generation. Fig. shows the 

elements of the bit array to be added by the short 

adder.  

Fig. shows the resulting partial product bit array 

after the short addition. Comparing both figures, we 

observe that the maximum height is reduced from 17 

to 16 for n = 64. Fig. shows the specific elements of 

the bit array (boxes) to be added by the short carry-

propagate addition. In this figure, pi,j corresponds to 

the bit j of partial product i, s0 is the sign bit of 

partial product 0, c0 = NOT(s0), bi is the bit for the 

two’s complement of partial producti, and zi is the 

ith bit of the result of the short addition. 

               The selection of these specific bits to be 

added is justified by the fact that, in this way, the 

short addition delay is hidden from the critical path 

that corresponds to a regular partial product 

generation. We perform the computation in two 

concurrent parts A and B as indicated in Fig. The 

elements of the part A are generated faster than the 

elements of part B. Specifically the elements of part 

A are obtained from: 

• the sign of the first partial product: this is directly 

obtained from bit y3 since there is no transfer digit 

from a previous radix-16 digit;  

• bits 3 to 7 of partial product 16: the recoded digit 

for partial product 16 can only be 0 or 1, since it is 

just a transfer digit. Therefore the bits of this partial 

product are generated by a simple AND operation of 

the bits of the multiplicand X and bit y63 (that 

generates the transfer from the previous digit). 

Therefore, we decided to implement part A as a 

speculative addition, by computing two results, a 

result with carry-in = 0 and a result with carry-in = 

1. This can be computed efficiently with a 

compound add. Fig. shows the implementation of 

part A. The compound adder determines 

speculatively the two possible results. Once the 

carry-in is obtained (from part B), the correct result 

is selected by a multiplexer. Note that the compound 

adder is of only five bits, since the propagation of 

the carry through the most significant three ones is 

straightforward. 

The computation of part B is more complicated. The 

main issue is that we need the 7 least-significant bits 

of partial product 15. Of course waiting for the 

generation of partial product 15 is not an option 

since we want to hide the short addition delay out of 
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the critical path. We decided to implement a specific 

circuit to embed the computation of the least-

significanbits of partial product 15 in the 

computation of part B (and also the addition of the 

bit b15). Note that for the method to be correct the 

computation of the partial product embedded in part 

B should be consistent with the regular computation 

performed for the most significant bits of partial 

product 15. 

 
Figure 3: Detail of the elements to be added by the short 

addition. 

 

 
Figure 4: Radix-16 partial product reduction array 

 

Fig.  shows the computation of part B. We decided 

to compute part B as a three operand addition with a 

3:2 carrysave adder and a carry-propagate adder. 

Two of the operands correspond to the least-

significant bits of the partial product 15 and the other 

operand corresponds to the three least-significant 

bits of partial product 16 (that are easily obtained by 

an AND operation). We perform the computation of 

the bits of the radix-16 partial product 15 as the 

addition of two radix-4 partial products. Therefore, 

we perform two concurrent radix-4 recodings and 

multiple selection. The multiples of the least 

significant radix-4 digit are {−2, −1, 0, 1, 2}, while 

the multiples for the most significant radix-4 digit 

are {−8, −4, 0, 4, 8} (radix-4 digit set {−2, −1, 0, 1, 

2}, but with relative weight of 4 with respect to the 

least-significant recoding). These two radix-4 

recodings produce exactly the same digit as a direct 

radix-16 recoding for most of the bit combinations. 

However, among the 32 5-bit combinations for a full 

radix-16 digit recoding, there are six not consistent 

with the two concurrent radix-4 recodings. 

Specifically: 

 
Figure 5: Speculative addition of part A 
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Figure 6: Computation of part B 

 

• The bit strings 00100 and 11011 are recoded in 

radix-16 to 2 and −2 respectively. However, when 

performing two parallel radix-4 recodings the 

resulting digits are (4, −2) and (−4, 2) respectively. 

That is, the radix-4 recoding performs the 

computation of 2X (-2X) as 4X-2X (−4X + 2X). To 

have a consistent computation we modified the 

radix-4 recoders so that these strings produce radix-

4 digits of the form (0, 2) and (0, −2).  

• The bit strings 00101 and 00110 are recoded in 

radix-16 to 3 in both cases. However, the resulting 

radix-4 digits are (4, −1). This means that the radix-

4 recoding performs the computation of 3X as 4X-

X. To address this inconsistency problem, in this 

case, we decided to implement the radix-16 multiple 

3X as 4X-X. This avoids the combination of radix-4 

digits (2, 1) and simplifies the multiplexers in Fig.   

• The bit strings 11001 and 11010 are recoded in 

radix-16 to −3 in both cases. However, the resulting 

radix-4 digits are (−4, 1). Therefore, for consistency, 

we proceed as in the previous case by generating the 

radix-16 multiple −3X as −4X + X. 

In the multiplexers and place 1 in a slot of 

the input of the 3:2 carry-save adder with relative 

binary weight equal to the absolute value of the 

corresponding radix-4 digit. These hot ones for 

two’s complement are indicated in Fig. 5 as the 

string “abcd.” For instance, if the least-significant 

radix-4 digit is −2 and the most significant radix-4 

digit is −4, then c = 1 and b = 1. Therefore, “abcd” 

signals are obtained directly from the selection bits 

of the 4:1 multiplexer. Fig. shows the recoding and 

partial product generation stage including the high-

level view of the hardware scheme proposed. The 

way we compute part B may still lead to an 

inconsistency with the computation of the most 

significant part of partial product 15. Specifically, 

when partial product 15 is the result of an odd 

multiple, a possible carry from the 7 least-significant 

bits is already incorporated in the most significant 

part of the partial product. During the computation 

of part B we should not produce again this carry.  

This issue is solved as follows. Let us 

consider first the case of positive odd multiples. Fig.  

shows that the computation of part B may generate 

two carry outs: the first from the 3:2 carry-save 

adder (Cout1), and the second from the carry-

propagate adder (Cout2). To avoid inconsistencies, 

we detect the carry propagated to the most 

significant part of the partial product 15 (we call this 

CM) and subtract it from the two carries generated 

in part B. Specifically, Table I shows the truth table 

to generate the carry out of part B. This truth table 

corresponds to the XOR of the three inputs. The CM 

carry is obtained from a multiplexer that selects 

among the carry to bit position 7 from the odd 

multiple generators (×3, ×5, and ×7), the carry to bit 

position 6 from the multiple generator ×3 (to get the 

carry to position 7 of multiple ×6), or carry zero for 

the other multiples. The resultant carry out is the 

selection signal used in the multiplexer of part A. 

For negative odd multiples we use a similar 

scheme. In this case the output of adder is 

complemented, but the only information available 

about the carry to position 7 is obtained directly from 

the adders that generate the positive odd multiple. 

Next, we show how to obtain the carry to the most 

significant part of the resultant complemented odd 

multiple from the carry to position 7 obtained from 

the adders. Let us call M the result of the positive 

odd multiple (output of the adder), and express 

M as M = N + P                 (1) 

  with P being the seven least-significant bits 

of the result from the adder, and N the remaining 

most significant bits of the result of the adder. Let us 

express N in terms of C7 (carry to position 7)  

N = Q + C727                 (2) 

that is, Q are the remaining most significant 

bits of the positive odd multiple minus the carry to 

position 7. Assuming a m bit partial product, the 

complement of M is expressed as 

M = 2n − 1 − M = 2n − 1 − N − C727 – Q                     

(3) 

  By adding and subtracting 27 and 

rearranging terms results in  

M = 2n − 27 − N − C727 + 27 − 1 – Q                            

(4) 

We identify the terms N = 2n − 27 − N and 

Q = 27 − 1 − Q. Taking into account these terms and 

adding and subtracting 27 and 2n−1 results in  

M = −2n−1 + N + (2n−1 − 27) + (1 − C7)27 + Q             

(5) 

The term (1 − C7)27 + Q = C7 + Q is 

computed in part B of the proposed scheme (see Fig. 

2.17), but (1 − C7)27 = C7 is also part of the most 

significant part of partial product 15. Therefore, for 

a negative partial product we need to subtract C7. In 

summary, we take CM as the carry to position 7 of 

the adders that generates the multiple when the 
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partial product is positive, and complement this 

carry, when the partial product is negative. 

 
Figure 7: High level view of the recoding and partial product 

generation stage including our proposed scheme 

 

IV.  BOOTH MULTIPLICATION 

 

Booth's multiplication algorithm is a 

multiplication algorithm that multiplies two signed 

binary numbers in two's complement notation. The 

algorithm was invented by Andrew Donald Booth in 

1950 while doing research on crystallography at 

Birkbeck College in Bloomsbury, London.[1] 

Booth's algorithm is of interest in the study of 

computer architecture. 

A. The algorithm 

 

Booth's algorithm examines adjacent pairs 

of bits of the 'N'-bit multiplier Y in signed two's 

complement representation, including an implicit bit 

below the least significant bit, y−1 = 0. For each bit 

yi, for i running from 0 to N − 1, the bits yi and yi−1 

are considered. Where these two bits are equal, the 

product accumulator P is left unchanged. Where yi = 

0 and yi−1 = 1, the multiplicand times 2i is added to 

P; and where yi = 1 and yi−1 = 0, the multiplicand 

times 2i is subtracted from P. The final value of P is 

the signed product.  The representations of the 

multiplicand and product are not specified; 

typically, these are both also in two's complement 

representation, like the multiplier, but any number 

system that supports addition and subtraction will 

work as well. As stated here, the order of the steps is 

not determined. Typically, it proceeds from LSB to 

MSB, starting at i = 0; the multiplication by 2i is then 

typically replaced by incremental shifting of the P 

accumulator to the right between steps; low bits can 

be shifted out, and subsequent additions and 

subtractions can then be done just on the highest N 

bits of P.[2] There are many variations and 

optimizations on these details. The algorithm is 

often described as converting strings of 1s in the 

multiplier to a high-order +1 and a low-order −1 at 

the ends of the string. When a string runs through the 

MSB, there is no high-order +1, and the net effect is 

interpretation as a negative of the appropriate value.  

 

B. Booth’s Algorithm Flowchart 

 

 

 
 

 

Figure 8: Booth’s Algorithm Flowchart 

 

AC and the appended bit Qn+1 are initially 

cleared to 0 and the sequence SC is set to a number 

n equal to the number of bits in the multiplier. The 

two bits of the multiplier in Qn and Qn+1are 

inspected. If the two bits are equal to 10, it means 

that the first 1 in a string has been encountered. This 

requires a subtraction of the multiplicand from the 

partial product in AC. If the 2 bits are equal to 01, it 

means that the first 0 in a string of 0’s has n = been 
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encountered. This requires the addition of the 

multiplicand to the partial product in AC.  

 

 

When the two bits are equal, the partial 

product does not change. An overflow cannot occur 

because the addition and subtraction of the 

multiplicand follow each other. As a consequence, 

the 2 numbers that are added always have a opposite 

signs, a condition that excludes an overflow. The 

next step is to shift right the partial product and the 

multiplier (including Qn+1). This is an arithmetic 

shift right (ashr) operation which AC and QR ti the 

right and leaves the sign bit in AC unchanged. The 

sequence counter is decremented and the 

computational loop is repeated n times.  

V. SIMULATION RESULTS 

 

 

Figure 9: Design summary 

 

Figure 10: RTL schematic 

 

 

Figure 11: Simulation results  
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Figure 12: Time Summary 

 

VI. CONCLUSION 

 

Pipelined large wordlength digital multipliers are 

difficult to design under the constraints of core cycle 

time (for nominal voltage), pipeline depth, power 

and energy consumption and area. Low level 

optimizations might be required to meet these 

constraints. In this work, we have presented a 

method to reduce by one the maximum height of the 

partial product array for 64-bit radix-16 Booth 

recoded magnitude multipliers. This reduction may 

allow more flexibility in the design of the reduction 

tree of the pipelined multiplier. We have shown that 

this reduction is achieved with no extra delay for n 

≥ 32 for a cell-based design. The method can be 

extended to Booth recoded radix-8 multipliers, 

signed multipliers and combined signed/unsigned 

multipliers. Radix-8 and radix-16 Booth recoded 

multipliers are attractive for low power designs, 

mainly to the lower complexity and depth of the 

reduction tree, and therefore they might be very 

popular in this era of power-constrained designs 

with increasing overheads due to wiring. 

 

VII. FUTURE SCOPE 

 

we will extend an optimization for binary 

radix-32 (modified) Booth recoded multipliers to 

reduce the maximum height of the partial product 

columns to [n/4] for n = N-bit unsigned operands. 

This is in contrast to the conventional maximum 

height of [(n + 1)/4]. Therefore, a reduction of one 

unit in the maximum height is achieved. This 

reduction may add flexibility during the design of 

the pipelined multiplier to meet the design goals, it 

may allow further optimizations of the partial 

product array reduction stage in terms of 

area/delay/power and/or may allow additional 

addends to be included in the partial product array 

without increasing the delay. The method can be 

extended to Booth recoded radix-8 multipliers, 

signed multipliers, combined signed/unsigned 

multipliers, and other values of n. 
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