
 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

60

Design Of High Order Compression

Multiplier For High-Speed DSP

Applications

B Bhavani

MTech Student, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: Bhaskarabhavani20@gmail.com

Dr.S. Kishore Reddy

Associate professor, HOD, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: kishorereddy416@gmail.com

Mr. E Nagesh

Assistant professor, Department Of ECE, VLSI System Design, Avanthi Institute of Engg. & Tech., India.

Email: nagesherugu@gmail.com

Abstract- Redundant Binary Partial Product

Generator technique are used to reduce by one row the

maximum height of the partial product array

generated by a radix16 Modified Booth Encoded

multiplier, without any raise in the delay of the partial

product creation Block. In this paper, we describe an

optimization for binary radix-16 (modified) Booth

recoded multipliers to reduce the maximum height of

the partial product columns to [n/4] for n = 64-bit

unsigned operands. This is in contrast to the

conventional maximum height of [(n + 1)/4]. Therefore,

a reduction of one unit in the maximum height is

achieved. These Arithmetic multipliers increase the

performance of ALU and Processors. We evaluate the

proposed approach by comparison with Normal Booth

Multiplier. Logic synthesis showed its efficiency in

terms of delay and power consumption when the word

length of each operand in the multiplier is 64bits.

Key words - multiplier, binary radix-16, reduction,

Booth Multiplier

I. INTRODUCTION

 BINARY multipliers are a widely used

building block element in the design of

microprocessors and embedded systems, and

therefore, they are an important target for

implementation optimization.

Manuscript received Oct 10, 2022; Revised Oct 25, 2022;

Accepted Nov 4, 2022

A. radix-16 partial products generation

 However, the advantage of the high radix is

that the number of partial products is further

reduced. For instance, for radix-16 and n-bit

operands, about n/4 partial products are generated.

Although less popular than radix-4, there exist

industrial instances of radix-8. and radix-16

multiplier in microprocessors implementations. The

choice of these radices is related to area/delay/power

optimization of pipelined multipliers (or fused

multiplier adder as in the case of a Intel Itanium

microprocessor), for balancing delay between stages

and/or reduce the number of pipelining flip-flops.

 A further consideration is that carry-

propagate adders are today highly energy-delay

optimized, while partial product reductions trees

suffer the increasingly serious problems related to a

complex wiring and glitching due to unbalanced

signal paths. It is recognized in the literature that a

radix-8 recoding leads to lower power multipliers

compared to radix-4 recoding at the cost of higher

latency (as a combinational block, without

considering pipelining). Moreover, although the

radix-16 multiplier requires the generation of more

odd multiples and has a more complex wiring for the

generation of partial products, a recent

microprocessor design considered it to be the best

https://www.openaccess.nl/en/open-publications
mailto:kishorereddy416@gmail.com
mailto:nagesherugu@gmail.com

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

61

choice for low power (under the specific constraints

for this microprocessor).

 In some optimizations for radix-4 two’s

complement multipliers were introduced. Although

for n-bit operands, a total of n/2 partial products are

generated, the resulting maximum height of the

partial product array is n/2 + 1 elements to be added

(in just one of the columns). This extra height by a

single-bit row is due to the +1 introduced in the bit

array to make the two’s complement of the most

significant partial product (when the recoded most

significant digit of the multiplier is negative). The

maximum column height may determine the delay

and complexity of the reduction tree, authors

showed that this extra column of one bit could be

assimilated (with just a simplified three-bit addition)

with the most significant part of the first partial

product without increasing the critical path of the

recoding and partial product generation stage. The

result is that the partial product array has a maximum

height of n/2. This reduction of one bit in the

maximum height might be of interest for high-

performance short-bit width two’s complement

multipliers (small n) with tight cycle time

constraints, that are very common in SIMD digital

signal processing applications. Moreover, if n is a

power of two, the optimization allows to use only 4-

2 carry-save adders for the reduction tree, potentially

leading to regular layouts. These kind of

optimizations can become particularly important as

they may add flexibility to the “optimal” design of

the pipelined multiplier.

II. EXISTING METHODS-MULTIPLERS

A. Multipliers

 Multipliers play an important role in

today’s digital signal processing and various other

applications. With advances in technology, many

researchers have tried and are trying to design

multipliers which offer either of the following

design targets

• High speed,

• Low power consumption,

• Regularity of layout and hence less area or

even combination of them in one multiplier

thus making them suitable for various high

speed,

• Low power and compact VLSI

implementation.

 The common multiplication method is “add

and shift” algorithm. In parallel multipliers number

of partial products to be added is the main parameter

that determines the performance of the multiplier.

To reduce the number of partial products to be

added, with increasing parallelism, the amount of

shifts between the partial products and intermediate

sums to be added will increase which may result in

reduced speed, increase in silicon area due to

irregularity of structure and also increased power

consumption due to increase in interconnect

resulting from complex routing. On the other hand

“serial-parallel” multipliers compromise speed to

achieve better performance for area and power

consumption. The selection of a parallel or serial

multiplier actually depends on the nature of

application. In this lecture we introduce the

multiplication algorithms and architecture and

compare them in terms of speed, area, power and

combination of these metrics. AND gates are used to

generate the Partial Products (PP). If the

multiplicand is N-bits and the Multiplier is M-bits

then there is N* M partial product.

B. History Of Multipliers

 The early computer systems had what are

known as Multiply and Accumulate units to perform

multiplication between two binary unsigned

numbers. The Multiply and Accumulate unit was the

simplest implementation of a multiplier. The basic

block diagram of such a system is given below.

Figure 1: Multiplier Block Diagram

C. Implementation

 The MAC unit requires a 4-bit

multiplicand register, 4-bit multiplier register, a 4-

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

62

bit full adder and an 8-bit accumulator to hold the

product. In the figure above the product register

holds the 8-bit result. In a typical binary

multiplication, based on the multiplier bit being

processed, either zero or the multiplicand is shifted

and then added.

III. PROPOSED MULTIPLIER

A. Basic Radix-16 Booth Multiplier

 In this section, we describe briefly the architecture

of the basic radix-16 Booth multiplier. For sake of

simplicity, but without loss of generality, we

consider unsigned operands with n = 64. Let us

denote with X the multiplicand operand with bit

components xi (i = 0 to n − 1, with the least-

significant bit, LSB, at position 0) and with Y the

multiplier operand and bit components yi. The first

step is the recoding of the multiplier operand [8]:

groups of four bits with relative values in the set {0,

1,..., 14, 15} are recoded to digits in the set {−8,

−7,..., 0,..., 7, 8} (minimally redundant radix-16 digit

set to reduce the number of multiples). This recoding

is done with the help of a transfer digit ti and an

interim digit wi [7]. The recoded digit zi is the sum

of the interim and transfer digits

zi = wi + ti.

When the value of the four bits, vi, is less than 8, the

transfer digit is zero and the interim digit wi = vi.

For values of vi greater than or equal to 8, vi is

transformed into vi = 16 − (16 − vi), so that a transfer

digit is generated to the next radix-16 digit position

(ti+1) and an interim digit of value wi = −(16 − v) is

left. That is

0 ≤ vi < 8 : ti+1 = 0 wi = vi wi ∈ [0, 7]

8 ≤ vi ≤ 15 : ti+1 = 1 wi = −(16 − vi) wi ∈ [−8, −1].

The transfer digit corresponds to the most-

significant bit (MSB) of the four-bit group, since this

bit determines if the radix-16 digit is greater than or

equal to 8. The final logical step is to add the interim

digits and the transfer digits (0 or 1) from the radix-

16 digit position to the right. Since the transfer digit

is either 1 or 0, the addition of the interim digit and

the transfer digit results in a final digit in the set {−8,

−7,..., 0,..., 7, 8}.

 Due to a possible transfer digit from the

most significant radix-16 digit, the number of

resultant radix-16 recoded digits is (n + 1)/4.

Therefore, for n = 64 the number of recoded digits

(and the number of partial products) is 17. Note that

the most significant digit is 0 or 1 because it is in fact

just a transfer digit. After recoding, the partial

products are generated by digit multiplication of the

recoded digits times the multiplicand X.

Figure 2: Partial product generation

For the set of digits {−8, −7,..., 0,..., 7, 8},

the multiples 1X, 2X, 4X, and 8X are easy to

compute, since they are obtained by simple logic

shifts. The negative versions of these multiples are

obtained by bit inversion and addition of a 1 in the

corresponding position in the bit array of the partial

products. The generation of 3X, 5X, and 7X (odd

multiples) requires carry-propagate adders (the

negative versions of these multiples are obtained as

before). Finally, 6X is obtained by a simple one bit

left shift of 3X. Fig. 2.12 illustrates a possible

implementation of the partial product generation.

Five bits of the multiplier Y are used to obtain the

recoded digit (four bits of one digit and one bit of the

previous digit to determine the transfer digit to be

added). The resultant digit is obtained as a one-hot

code to directly drive a 8 to 1 multiplexer with an

implicit zero output (output equal to zero when all

the control signals of the multiplexer are zero).

The recoding requires the implementation

of simple logic equations that are not in the critical

path due to the generation in parallel of the odd

multiples (carry-propagate addition). The XOR at

the output of the multiplexer is for bit

complementation (part of the computation of the

two’s complement when the multiplier digit is

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

63

negative). Fig. illustrates part of the resultant bit

array for n = 64 after the simplification of the sign

extension [7].

In general, each partial product has n + 4

bits including the sign in two’s complement

representation. The extra four bits are required to

host a digit multiplication by up to 8 and a sign bit

due to the possible multiplication by negative

multiplier digits. Since the partial products are left-

shifted four bit positions with respect to each other,

a costly sign extension would be necessary.

However, the sign extension is simplified by

concatenation of some bits to each partial product (S

is the sign bit of the partial product and C is S

complemented): CSSS for the first partial product

and 111C for the rest of partial products (except the

partial product at the bottom that is non negative

since the corresponding multiplier digit is 0 or 1).

The bits denoted by b in Fig. corresponds to the logic

1 that is added for the two’s complement for

negative partial products.

After the generation of the partial product

bit array, the reduction (multioperand addition) from

a maximum height of 17 (for n = 64) to 2 is

performed. The methods for multioperand addition

are well known, with a common solution consisting

of using 3 to 2 bit reduction with full adders (or 3:2

carry-save adders) or 4 to 2 bit reduction with 4:2

carry-save adders. The delay and design effort of

this stage are highly dependent on the maximum

height of the bit array. It is recognized that reduction

arrays of 4:2 carry-save adders may lead to more

regular layouts [16]. For instance, with a maximum

height of 16, a total of 3 levels of 4:2 carry-save

adders would be necessary. A maximum height of

17 leads to different approaches that may increase

the delay and/or require to use arrays of 3:2 carry-

save adders interconnected to minimize delay [20].

After the reduction to two operands, a carry-

propagate addition is performed. This addition may

take advantage of the specific signal arrival times

from the partial product reduction step.

B. Partial product generation stage including

our proposed scheme

 To reduce the maximum height of the

partial product bit array we perform a short carry-

propagate addition in parallel to the regular partial

product generation. This short addition reduces the

maximum height by one row and it is faster than the

regular partial product generation. Fig. shows the

elements of the bit array to be added by the short

adder.

Fig. shows the resulting partial product bit array

after the short addition. Comparing both figures, we

observe that the maximum height is reduced from 17

to 16 for n = 64. Fig. shows the specific elements of

the bit array (boxes) to be added by the short carry-

propagate addition. In this figure, pi,j corresponds to

the bit j of partial product i, s0 is the sign bit of

partial product 0, c0 = NOT(s0), bi is the bit for the

two’s complement of partial producti, and zi is the

ith bit of the result of the short addition.

 The selection of these specific bits to be

added is justified by the fact that, in this way, the

short addition delay is hidden from the critical path

that corresponds to a regular partial product

generation. We perform the computation in two

concurrent parts A and B as indicated in Fig. The

elements of the part A are generated faster than the

elements of part B. Specifically the elements of part

A are obtained from:

• the sign of the first partial product: this is directly

obtained from bit y3 since there is no transfer digit

from a previous radix-16 digit;

• bits 3 to 7 of partial product 16: the recoded digit

for partial product 16 can only be 0 or 1, since it is

just a transfer digit. Therefore the bits of this partial

product are generated by a simple AND operation of

the bits of the multiplicand X and bit y63 (that

generates the transfer from the previous digit).

Therefore, we decided to implement part A as a

speculative addition, by computing two results, a

result with carry-in = 0 and a result with carry-in =

1. This can be computed efficiently with a

compound add. Fig. shows the implementation of

part A. The compound adder determines

speculatively the two possible results. Once the

carry-in is obtained (from part B), the correct result

is selected by a multiplexer. Note that the compound

adder is of only five bits, since the propagation of

the carry through the most significant three ones is

straightforward.

The computation of part B is more complicated. The

main issue is that we need the 7 least-significant bits

of partial product 15. Of course waiting for the

generation of partial product 15 is not an option

since we want to hide the short addition delay out of

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

64

the critical path. We decided to implement a specific

circuit to embed the computation of the least-

significanbits of partial product 15 in the

computation of part B (and also the addition of the

bit b15). Note that for the method to be correct the

computation of the partial product embedded in part

B should be consistent with the regular computation

performed for the most significant bits of partial

product 15.

Figure 3: Detail of the elements to be added by the short

addition.

Figure 4: Radix-16 partial product reduction array

Fig. shows the computation of part B. We decided

to compute part B as a three operand addition with a

3:2 carrysave adder and a carry-propagate adder.

Two of the operands correspond to the least-

significant bits of the partial product 15 and the other

operand corresponds to the three least-significant

bits of partial product 16 (that are easily obtained by

an AND operation). We perform the computation of

the bits of the radix-16 partial product 15 as the

addition of two radix-4 partial products. Therefore,

we perform two concurrent radix-4 recodings and

multiple selection. The multiples of the least

significant radix-4 digit are {−2, −1, 0, 1, 2}, while

the multiples for the most significant radix-4 digit

are {−8, −4, 0, 4, 8} (radix-4 digit set {−2, −1, 0, 1,

2}, but with relative weight of 4 with respect to the

least-significant recoding). These two radix-4

recodings produce exactly the same digit as a direct

radix-16 recoding for most of the bit combinations.

However, among the 32 5-bit combinations for a full

radix-16 digit recoding, there are six not consistent

with the two concurrent radix-4 recodings.

Specifically:

Figure 5: Speculative addition of part A

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

65

Figure 6: Computation of part B

• The bit strings 00100 and 11011 are recoded in

radix-16 to 2 and −2 respectively. However, when

performing two parallel radix-4 recodings the

resulting digits are (4, −2) and (−4, 2) respectively.

That is, the radix-4 recoding performs the

computation of 2X (-2X) as 4X-2X (−4X + 2X). To

have a consistent computation we modified the

radix-4 recoders so that these strings produce radix-

4 digits of the form (0, 2) and (0, −2).

• The bit strings 00101 and 00110 are recoded in

radix-16 to 3 in both cases. However, the resulting

radix-4 digits are (4, −1). This means that the radix-

4 recoding performs the computation of 3X as 4X-

X. To address this inconsistency problem, in this

case, we decided to implement the radix-16 multiple

3X as 4X-X. This avoids the combination of radix-4

digits (2, 1) and simplifies the multiplexers in Fig.

• The bit strings 11001 and 11010 are recoded in

radix-16 to −3 in both cases. However, the resulting

radix-4 digits are (−4, 1). Therefore, for consistency,

we proceed as in the previous case by generating the

radix-16 multiple −3X as −4X + X.

In the multiplexers and place 1 in a slot of

the input of the 3:2 carry-save adder with relative

binary weight equal to the absolute value of the

corresponding radix-4 digit. These hot ones for

two’s complement are indicated in Fig. 5 as the

string “abcd.” For instance, if the least-significant

radix-4 digit is −2 and the most significant radix-4

digit is −4, then c = 1 and b = 1. Therefore, “abcd”

signals are obtained directly from the selection bits

of the 4:1 multiplexer. Fig. shows the recoding and

partial product generation stage including the high-

level view of the hardware scheme proposed. The

way we compute part B may still lead to an

inconsistency with the computation of the most

significant part of partial product 15. Specifically,

when partial product 15 is the result of an odd

multiple, a possible carry from the 7 least-significant

bits is already incorporated in the most significant

part of the partial product. During the computation

of part B we should not produce again this carry.

This issue is solved as follows. Let us

consider first the case of positive odd multiples. Fig.

shows that the computation of part B may generate

two carry outs: the first from the 3:2 carry-save

adder (Cout1), and the second from the carry-

propagate adder (Cout2). To avoid inconsistencies,

we detect the carry propagated to the most

significant part of the partial product 15 (we call this

CM) and subtract it from the two carries generated

in part B. Specifically, Table I shows the truth table

to generate the carry out of part B. This truth table

corresponds to the XOR of the three inputs. The CM

carry is obtained from a multiplexer that selects

among the carry to bit position 7 from the odd

multiple generators (×3, ×5, and ×7), the carry to bit

position 6 from the multiple generator ×3 (to get the

carry to position 7 of multiple ×6), or carry zero for

the other multiples. The resultant carry out is the

selection signal used in the multiplexer of part A.

For negative odd multiples we use a similar

scheme. In this case the output of adder is

complemented, but the only information available

about the carry to position 7 is obtained directly from

the adders that generate the positive odd multiple.

Next, we show how to obtain the carry to the most

significant part of the resultant complemented odd

multiple from the carry to position 7 obtained from

the adders. Let us call M the result of the positive

odd multiple (output of the adder), and express

M as M = N + P (1)

 with P being the seven least-significant bits

of the result from the adder, and N the remaining

most significant bits of the result of the adder. Let us

express N in terms of C7 (carry to position 7)

N = Q + C727 (2)

that is, Q are the remaining most significant

bits of the positive odd multiple minus the carry to

position 7. Assuming a m bit partial product, the

complement of M is expressed as

M = 2n − 1 − M = 2n − 1 − N − C727 – Q

(3)

 By adding and subtracting 27 and

rearranging terms results in

M = 2n − 27 − N − C727 + 27 − 1 – Q

(4)

We identify the terms N = 2n − 27 − N and

Q = 27 − 1 − Q. Taking into account these terms and

adding and subtracting 27 and 2n−1 results in

M = −2n−1 + N + (2n−1 − 27) + (1 − C7)27 + Q

(5)

The term (1 − C7)27 + Q = C7 + Q is

computed in part B of the proposed scheme (see Fig.

2.17), but (1 − C7)27 = C7 is also part of the most

significant part of partial product 15. Therefore, for

a negative partial product we need to subtract C7. In

summary, we take CM as the carry to position 7 of

the adders that generates the multiple when the

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

66

partial product is positive, and complement this

carry, when the partial product is negative.

Figure 7: High level view of the recoding and partial product

generation stage including our proposed scheme

IV. BOOTH MULTIPLICATION

Booth's multiplication algorithm is a

multiplication algorithm that multiplies two signed

binary numbers in two's complement notation. The

algorithm was invented by Andrew Donald Booth in

1950 while doing research on crystallography at

Birkbeck College in Bloomsbury, London.[1]

Booth's algorithm is of interest in the study of

computer architecture.

A. The algorithm

Booth's algorithm examines adjacent pairs

of bits of the 'N'-bit multiplier Y in signed two's

complement representation, including an implicit bit

below the least significant bit, y−1 = 0. For each bit

yi, for i running from 0 to N − 1, the bits yi and yi−1

are considered. Where these two bits are equal, the

product accumulator P is left unchanged. Where yi =

0 and yi−1 = 1, the multiplicand times 2i is added to

P; and where yi = 1 and yi−1 = 0, the multiplicand

times 2i is subtracted from P. The final value of P is

the signed product. The representations of the

multiplicand and product are not specified;

typically, these are both also in two's complement

representation, like the multiplier, but any number

system that supports addition and subtraction will

work as well. As stated here, the order of the steps is

not determined. Typically, it proceeds from LSB to

MSB, starting at i = 0; the multiplication by 2i is then

typically replaced by incremental shifting of the P

accumulator to the right between steps; low bits can

be shifted out, and subsequent additions and

subtractions can then be done just on the highest N

bits of P.[2] There are many variations and

optimizations on these details. The algorithm is

often described as converting strings of 1s in the

multiplier to a high-order +1 and a low-order −1 at

the ends of the string. When a string runs through the

MSB, there is no high-order +1, and the net effect is

interpretation as a negative of the appropriate value.

B. Booth’s Algorithm Flowchart

Figure 8: Booth’s Algorithm Flowchart

AC and the appended bit Qn+1 are initially

cleared to 0 and the sequence SC is set to a number

n equal to the number of bits in the multiplier. The

two bits of the multiplier in Qn and Qn+1are

inspected. If the two bits are equal to 10, it means

that the first 1 in a string has been encountered. This

requires a subtraction of the multiplicand from the

partial product in AC. If the 2 bits are equal to 01, it

means that the first 0 in a string of 0’s has n = been

https://www.openaccess.nl/en/open-publications
https://en.wikipedia.org/wiki/Multiplication_algorithm
https://en.wikipedia.org/wiki/Base_2
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Andrew_Donald_Booth
https://en.wikipedia.org/wiki/Crystallography
https://en.wikipedia.org/wiki/Birkbeck,_University_of_London
https://en.wikipedia.org/wiki/Bloomsbury
https://en.wikipedia.org/wiki/London
https://en.wikipedia.org/wiki/Booth's_multiplication_algorithm#cite_note-Booth_1951-1
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Booth's_multiplication_algorithm#cite_note-Chen_1992-2

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

67

encountered. This requires the addition of the

multiplicand to the partial product in AC.

When the two bits are equal, the partial

product does not change. An overflow cannot occur

because the addition and subtraction of the

multiplicand follow each other. As a consequence,

the 2 numbers that are added always have a opposite

signs, a condition that excludes an overflow. The

next step is to shift right the partial product and the

multiplier (including Qn+1). This is an arithmetic

shift right (ashr) operation which AC and QR ti the

right and leaves the sign bit in AC unchanged. The

sequence counter is decremented and the

computational loop is repeated n times.

V. SIMULATION RESULTS

Figure 9: Design summary

Figure 10: RTL schematic

Figure 11: Simulation results

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

68

Figure 12: Time Summary

VI. CONCLUSION

Pipelined large wordlength digital multipliers are

difficult to design under the constraints of core cycle

time (for nominal voltage), pipeline depth, power

and energy consumption and area. Low level

optimizations might be required to meet these

constraints. In this work, we have presented a

method to reduce by one the maximum height of the

partial product array for 64-bit radix-16 Booth

recoded magnitude multipliers. This reduction may

allow more flexibility in the design of the reduction

tree of the pipelined multiplier. We have shown that

this reduction is achieved with no extra delay for n

≥ 32 for a cell-based design. The method can be

extended to Booth recoded radix-8 multipliers,

signed multipliers and combined signed/unsigned

multipliers. Radix-8 and radix-16 Booth recoded

multipliers are attractive for low power designs,

mainly to the lower complexity and depth of the

reduction tree, and therefore they might be very

popular in this era of power-constrained designs

with increasing overheads due to wiring.

VII. FUTURE SCOPE

we will extend an optimization for binary

radix-32 (modified) Booth recoded multipliers to

reduce the maximum height of the partial product

columns to [n/4] for n = N-bit unsigned operands.

This is in contrast to the conventional maximum

height of [(n + 1)/4]. Therefore, a reduction of one

unit in the maximum height is achieved. This

reduction may add flexibility during the design of

the pipelined multiplier to meet the design goals, it

may allow further optimizations of the partial

product array reduction stage in terms of

area/delay/power and/or may allow additional

addends to be included in the partial product array

without increasing the delay. The method can be

extended to Booth recoded radix-8 multipliers,

signed multipliers, combined signed/unsigned

multipliers, and other values of n.

REFERENCES

[1] I. Blake, G. Seroussi, andN.P.Smart, Elliptic Curves in

Cryptography,ser. London Mathematical Society

Lecture Note Series.. Cambridge,U.K.: Cambridge

Univ. Press, 1999.

[2] N. R. Murthy and M. N. S. Swamy, “Cryptographic

applications of brahmaqupta-bha skara equation,”

IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 53, no.

7, pp. 1565–1571, 2006.

[3] L. Song and K. K. Parhi, “Low-energy digit-

serial/parallel finite field multipliers,” J. VLSI Digit.

Process., vol. 19, pp. 149–C166, 1998.

[4] P. K. Meher, “On efficient implementation of

accumulation in finite field over GF(2m) and its

applications,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 17, no. 4, pp. 541–550, 2009.

[5] L. Song, K. K. Parhi, I. Kuroda, and T.Nishitani,

“Hardware/software codesign of finite field

datapath for low-energy Reed-Solomn

codecs,”IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 8, no. 2, pp.160–172, Apr. 2000.

[6] G. Drolet, “A new representation of elements of finite

fields GF(2m) yielding small complexity arithmetic

circuits,” IEEE Trans. Comput.,vol. 47, no. 9, pp.

938–946, 1998.

[7] C.-Y. Lee, J.-S. Horng, I.-C. Jou, and E.-H. Lu, “Low-

complexity bit-parallel systolic montgomery

multipliers for special classes of GF(2m),” IEEE

Trans. Comput., vol. 54, no. 9, pp. 1061–1070, Sep.

2005.

[8] P. K. Meher, “Systolic and super-systolic multipliers

for finite field GF(2m) based on irreducible

https://www.openaccess.nl/en/open-publications

 International Journal of Engineering Innovations in Advanced Technology
 ISSN: 2582-1431 (Online), Volume-4 Issue-4, December 2022

69

trinomials,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 55, no. 4, pp. 1031–1040, May 2008.

[9] J. Xie, J. He, and P. K. Meher, “Low latency systolic

montgomery multiplier for finite field GF(2m)

based on pentanomials,” IEEE Trans.Very Large

Scale Integr. (VLSI) Syst., vol. 21, no. 2, pp. 385–

389, Feb.2013.

[10] H.Wu, M. A. Hasan, I. F. Blake, and S. Gao, “Finite

field multiplier using redundant representation,”

IEEE Trans. Comput., vol. 51, no. 11, pp. 1306–

1316, Nov. 2002.

[11] A. H. Namin, H. Wu, and M. Ahmadi, “Comb

architectures for finite field multiplication in

 ,” IEEE Trans. Comput., vol. 56, no. 7, pp.

909–916, Jul. 2007.

[12] A. H. Namin, H. Wu, and M. Ahmadi, “A new finite

field multiplier using redundat representation,”

IEEE Trans. Comput., vol. 57, no. 5, pp. 716–720,

May 2008.

[13] A. H. Namin, H.Wu, and M. Ahmadi, “A high-speed

word level finite field multiplier in using

redundant representation,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 17, no. 10, pp. 1546–

1550,Oct. 2009.

[14] A. H. Namin, H. Wu, and M. Ahmadi, “An efficient

finite field multiplier using redundant

representation,” ACMTrans. Embedded Comput.

Sys., vol. 11, no. 2, Jul. 2012, Art. 31.

[15] North Carolina State University, 45 nm FreePDK

wiki [Online].

Available:http://www.eda.ncsu.edu/wiki/FreePDK

45:Manual

https://www.openaccess.nl/en/open-publications

